/usr/share/axiom-20170501/src/algebra/MMLFORM.spad is in axiom-source 20170501-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 | )abbrev domain MMLFORM MathMLFormat
++ Author: Arthur C. Ralfs
++ Date: January 2007
++ Description:
++ This package is based on the TeXFormat domain by Robert S. Sutor
++ \spadtype{MathMLFormat} provides a coercion from \spadtype{OutputForm}
++ to MathML format.
MathMLFormat() : SIG == CODE where
E ==> OutputForm
I ==> Integer
L ==> List
S ==> String
US ==> UniversalSegment(Integer)
SIG ==> SetCategory with
coerce: E -> S
++ coerce(o) changes o in the standard output format to MathML
++ format.
coerceS: E -> S
++ coerceS(o) changes o in the standard output format to MathML
++ format and displays formatted result.
coerceL: E -> S
++ coerceL(o) changes o in the standard output format to MathML
++ format and displays result as one long string.
exprex: E -> S
++ exprex(e) coverts \spadtype{OutputForm} to \spadtype{String} with
++ the structure preserved with braces. Actually this is not quite
++ accurate. The function \spadfun{precondition} is first
++ applied to the
++ \spadtype{OutputForm} expression before \spadfun{exprex}.
++ The raw \spadtype{OutputForm} and
++ the nature of the \spadfun{precondition} function is
++ still obscure to me
++ at the time of this writing (2007-02-14).
display: S -> Void
++ display(s) prints the string returned by coerce,
++ adding <math ...> tags.
CODE ==> add
import OutputForm
import Character
import Integer
import List OutputForm
import List String
-- local variable declarations and definitions
expr: E
prec,opPrec: I
str: S
blank : S := " \ "
maxPrec : I := 1000000
minPrec : I := 0
unaryOps : L S := ["-","^"]$(L S)
unaryPrecs : L I := [700,260]$(L I)
-- the precedence of / in the following is relatively low because
-- the bar obviates the need for parentheses.
binaryOps : L S := ["+->","|","**","/","<",">","=","OVER"]$(L S)
binaryPrecs : L I := [0,0,900, 700,400,400,400, 700]$(L I)
naryOps : L S := ["-","+","*",blank,",",";"," ","ROW","",
" \cr ","&","</mtd></mtr><mtr><mtd>"]$(L S)
naryPrecs : L I := [700,700,800, 800,110,110, 0, 0, 0,
0, 0, 0]$(L I)
naryNGOps : L S := ["ROW","&"]$(L S)
plexOps : L S := ["SIGMA","SIGMA2","PI","PI2","INTSIGN","INDEFINTEGRAL"]$(L S)
plexPrecs : L I := [ 700, 800, 700, 800 , 700, 700]$(L I)
specialOps : L S := ["MATRIX","BRACKET","BRACE","CONCATB","VCONCAT", _
"AGGLST","CONCAT","OVERBAR","ROOT","SUB","TAG", _
"SUPERSUB","ZAG","AGGSET","SC","PAREN", _
"SEGMENT","QUOTE","theMap","SLASH" ]
-- the next two lists provide translations for some strings for
-- which MML provides special macros.
specialStrings : L S :=
["cos", "cot", "csc", "log", "sec", "sin", "tan",
"cosh", "coth", "csch", "sech", "sinh", "tanh",
"acos","asin","atan","erf","...","$","infinity"]
specialStringsInMML : L S :=
["<mo>cos</mo>","<mo>cot</mo>","<mo>csc</mo>","<mo>log</mo>","<mo>sec</mo>","<mo>sin</mo>","<mo>tan</mo>",
"<mo>cosh</mo>","<mo>coth</mo>","<mo>csch</mo>","<mo>sech</mo>","<mo>sinh</mo>","<mo>tanh</mo>",
"<mo>arccos</mo>","<mo>arcsin</mo>","<mo>arctan</mo>","<mo>erf</mo>","<mo>…</mo>","<mo>$</mo>","<mo>∞</mo>"]
-- local function signatures
addBraces: S -> S
addBrackets: S -> S
atomize: E -> L E
displayElt: S -> Void
++ function for recursively displaying mathml nicely formatted
eltLimit: (S,I,S) -> I
++ demarcates end postion of mathml element with name:S starting at
++ position i:I in mathml string s:S and returns end of end tag as
++ i:I position in mathml string, find start and end of
++ substring: <name ...>...</name>
eltName: (I,S) -> S
++ find name of mathml element starting at position i:I in string s:S
group: S -> S
formatBinary: (S,L E, I) -> S
formatFunction: (S,L E, I) -> S
formatIntSign: (L E, I) -> S
formatMatrix: L E -> S
formatNary: (S,L E, I) -> S
formatNaryNoGroup: (S,L E, I) -> S
formatNullary: S -> S
formatPlex: (S,L E, I) -> S
formatSpecial: (S,L E, I) -> S
formatSub: (E, L E, I) -> S
formatSuperSub: (E, L E, I) -> S
formatSuperSub1: (E, L E, I) -> S
formatUnary: (S, E, I) -> S
formatMml: (E,I) -> S
formatZag: L E -> S
formatZag1: L E -> S
newWithNum: I -> $
parenthesize: S -> S
precondition: E -> E
postcondition: S -> S
stringify: E -> S
tagEnd: (S,I,S) -> I
++ finds closing ">" of start or end tag for mathML element
ungroup: S -> S
-- public function definitions
coerce(expr : E): S ==
s : S := postcondition formatMml(precondition expr, minPrec)
s
coerceS(expr : E): S ==
s : S := postcondition formatMml(precondition expr, minPrec)
sayTeX$Lisp "<math xmlns=_"http://www.w3.org/1998/Math/MathML_" mathsize=_"big_" display=_"block_">"
displayElt(s)
sayTeX$Lisp "</math>"
s
coerceL(expr : E): S ==
s : S := postcondition formatMml(precondition expr, minPrec)
sayTeX$Lisp "<math xmlns=_"http://www.w3.org/1998/Math/MathML_" mathsize=_"big_" display=_"block_">"
sayTeX$Lisp s
sayTeX$Lisp "</math>"
s
display(mathml : S): Void ==
sayTeX$Lisp "<math xmlns=_"http://www.w3.org/1998/Math/MathML_" mathsize=_"big_" display=_"block_">"
sayTeX$Lisp mathml
sayTeX$Lisp "</math>"
void()$Void
exprex(expr : E): S ==
-- This breaks down an expression into atoms and returns it as
-- a string. It's for developmental purposes to help understand
-- the expressions.
a : E
expr := precondition expr
-- sayTeX$Lisp "0: "stringify expr
(ATOM(expr)$Lisp@Boolean) or (stringify expr = "NOTHING") =>
concat ["{",stringify expr,"}"]
le : L E := (expr pretend L E)
op := first le
sop : S := exprex op
args : L E := rest le
nargs : I := #args
-- sayTeX$Lisp concat ["1: ",stringify first le," : ",string(nargs)$S]
s : S := concat ["{",sop]
if nargs > 0 then
for a in args repeat
-- sayTeX$Lisp concat ["2: ",stringify a]
s1 : S := exprex a
s := concat [s,s1]
s := concat [s,"}"]
displayElt(mathml:S):Void
eltName(pos:I,mathml:S):S
eltLimit(name:S,pos:I,mathml:S):I
tagEnd(name:S,pos:I,mathml:S):I
displayElt(mathML:S): Void ==
-- Takes a string of syntactically complete mathML
-- and formats it for display.
-- sayTeX$Lisp "****displayElt1****"
-- sayTeX$Lisp mathML
enT:I -- marks end of tag, for example, "<name>"
enE:I -- marks end of element, for example, "<name> ... </name>"
end:I -- marks end of mathML string
u:US
end := #mathML
length:I := 60
-- sayTeX$Lisp "****displayElt1.1****"
name:S := eltName(1,mathML)
-- sayTeX$Lisp name
-- sayTeX$Lisp concat("****displayElt1.2****",name)
enE := eltLimit(name,2+#name,mathML)
-- sayTeX$Lisp "****displayElt2****"
if enE < length then
-- sayTeX$Lisp "****displayElt3****"
u := segment(1,enE)$US
sayTeX$Lisp mathML.u
else
-- sayTeX$Lisp "****displayElt4****"
enT := tagEnd(name,1,mathML)
u := segment(1,enT)$US
sayTeX$Lisp mathML.u
u := segment(enT+1,enE-#name-3)$US
displayElt(mathML.u)
u := segment(enE-#name-2,enE)$US
sayTeX$Lisp mathML.u
if end > enE then
-- sayTeX$Lisp "****displayElt5****"
u := segment(enE+1,end)$US
displayElt(mathML.u)
void()$Void
eltName(pos:I,mathML:S): S ==
-- Assuming pos is the position of "<" for a start tag of a mathML
-- element finds and returns the element's name.
i:I := pos+1
--sayTeX$Lisp "eltName:mathmML string: "mathML
while member?(mathML.i,lowerCase()$CharacterClass)$CharacterClass repeat
i := i+1
u:US := segment(pos+1,i-1)
name:S := mathML.u
eltLimit(name:S,pos:I,mathML:S): I ==
-- Finds the end of a mathML element like "<name ...> ... </name>"
-- where pos is the position of the space after name in the start tag
-- although it could point to the closing ">". Returns the position
-- of the ">" in the end tag.
pI:I := pos
startI:I
endI:I
startS:S := concat ["<",name]
endS:S := concat ["</",name,">"]
level:I := 1
--sayTeX$Lisp "eltLimit: element name: "name
while (level > 0) repeat
startI := position(startS,mathML,pI)$String
endI := position(endS,mathML,pI)$String
if (startI = 0) then
level := level-1
--sayTeX$Lisp "****eltLimit 1******"
pI := tagEnd(name,endI,mathML)
else
if (startI < endI) then
level := level+1
pI := tagEnd(name,startI,mathML)
else
level := level-1
pI := tagEnd(name,endI,mathML)
pI
tagEnd(name:S,pos:I,mathML:S):I ==
-- Finds the closing ">" for either a start or end tag of a mathML
-- element, so the return value is the position of ">" in mathML.
pI:I := pos
while (mathML.pI ^= char ">") repeat
pI := pI+1
u:US := segment(pos,pI)$US
--sayTeX$Lisp "tagEnd: "mathML.u
pI
atomize(expr : E): L E ==
-- This breaks down an expression into a flat list of atomic expressions.
-- expr should be preconditioned.
le : L E := nil()
a : E
letmp : L E
(ATOM(expr)$Lisp@Boolean) or (stringify expr = "NOTHING") =>
le := append(le,list(expr))
letmp := expr pretend L E
for a in letmp repeat
le := append(le,atomize a)
le
ungroup(str: S): S ==
len : I := #str
len < 14 => str
lrow : S := "<mrow>"
rrow : S := "</mrow>"
-- drop leading and trailing mrows
u1 : US := segment(1,6)$US
u2 : US := segment(len-6,len)$US
if (str.u1 =$S lrow) and (str.u2 =$S rrow) then
u : US := segment(7,len-7)$US
str := str.u
str
postcondition(str: S): S ==
len : I := #str
plusminus : S := "<mo>+</mo><mo>-</mo>"
pos : I := position(plusminus,str,1)
if pos > 0 then
ustart:US := segment(1,pos-1)$US
uend:US := segment(pos+20,len)$US
str := concat [str.ustart,"<mo>-</mo>",str.uend]
if pos < len-18 then
str := postcondition(str)
str
stringify expr == (mathObject2String$Lisp expr)@S
group str ==
concat ["<mrow>",str,"</mrow>"]
addBraces str ==
concat ["<mo>{</mo>",str,"<mo>}</mo>"]
addBrackets str ==
concat ["<mo>[</mo>",str,"<mo>]</mo>"]
parenthesize str ==
concat ["<mo>(</mo>",str,"<mo>)</mo>"]
precondition expr ==
outputTran$Lisp expr
formatSpecial(op : S, args : L E, prec : I) : S ==
arg : E
prescript : Boolean := false
op = "theMap" => "<mtext>theMap(...)</mtext>"
op = "AGGLST" =>
formatNary(",",args,prec)
op = "AGGSET" =>
formatNary(";",args,prec)
op = "TAG" =>
group concat [formatMml(first args,prec),
"<mo>→</mo>",
formatMml(second args,prec)]
--RightArrow
op = "SLASH" =>
group concat [formatMml(first args,prec),
"<mo>/</mo>",formatMml(second args,prec)]
op = "VCONCAT" =>
group concat("<mtable><mtr>",
concat(concat([concat("<mtd>",concat(formatMml(u, minPrec),"</mtd>"))
for u in args]::L S),
"</mtr></mtable>"))
op = "CONCATB" =>
formatNary(" ",args,prec)
op = "CONCAT" =>
formatNary("",args,minPrec)
op = "QUOTE" =>
group concat("<mo>'</mo>",formatMml(first args, minPrec))
op = "BRACKET" =>
group addBrackets ungroup formatMml(first args, minPrec)
op = "BRACE" =>
group addBraces ungroup formatMml(first args, minPrec)
op = "PAREN" =>
group parenthesize ungroup formatMml(first args, minPrec)
op = "OVERBAR" =>
null args => ""
group concat ["<mover accent='true'><mrow>",_
formatMml(first args,minPrec),_
"</mrow><mo stretchy='true'>¯</mo></mover>"]
--OverBar
op = "ROOT" =>
null args => ""
tmp : S := group formatMml(first args, minPrec)
null rest args => concat ["<msqrt>",tmp,"</msqrt>"]
group concat
["<mroot><mrow>",tmp,"</mrow>",_
formatMml(first rest args, minPrec),"</mroot>"]
op = "SEGMENT" =>
tmp : S := concat [formatMml(first args, minPrec),"<mo>..</mo>"]
group
null rest args => tmp
concat [tmp,formatMml(first rest args, minPrec)]
-- SUB should now be diverted in formatMml although I'll leave
-- the code here for now.
op = "SUB" =>
group concat ["<msub>",formatMml(first args, minPrec),
formatSpecial("AGGLST",rest args,minPrec),"</msub>"]
-- SUPERSUB should now be diverted in formatMml although I'll leave
-- the code here for now.
op = "SUPERSUB" =>
base:S := formatMml(first args, minPrec)
args := rest args
if #args = 1 then
"<msub><mrow>"base"</mrow><mrow>"_
formatMml(first args, minPrec)"</mrow></msub>"
else if #args = 2 then
-- it would be nice to substitue ′ for , in the case of
-- an ordinary derivative, it looks a lot better.
"<msubsup><mrow>"base"</mrow><mrow>"_
formatMml(first args,minPrec)_
"</mrow><mrow>"_
formatMml(first rest args, minPrec)_
"</mrow></msubsup>"
else if #args = 3 then
"<mmultiscripts><mrow>"base"</mrow><mrow>"_
formatMml(first args,minPrec)"</mrow><mrow>"_
formatMml(first rest args,minPrec)"</mrow><mprescripts/><mrow>"_
formatMml(first rest rest args,minPrec)_
"</mrow><none/></mmultiscripts>"
else if #args = 4 then
"<mmultiscripts><mrow>"base"</mrow><mrow>"_
formatMml(first args,minPrec)"</mrow><mrow>"_
formatMml(first rest args,minPrec)"</mrow><mprescripts/><mrow>"_
formatMml(first rest rest args,minPrec)_
"</mrow><mrow>"formatMml(first rest rest rest args,minPrec)_
"</mrow></mmultiscripts>"
else
"<mtext>Problem with multiscript object</mtext>"
op = "SC" =>
-- need to handle indentation someday
null args => ""
tmp := formatNaryNoGroup("</mtd></mtr><mtr><mtd>", args, minPrec)
group concat ["<mtable><mtr><mtd>",tmp,"</mtd></mtr></mtable>"]
op = "MATRIX" => formatMatrix rest args
op = "ZAG" =>
-- {{+}{3}{{ZAG}{1}{7}}{{ZAG}{1}{15}}{{ZAG}{1}{1}}
-- {{ZAG}{1}{25}}{{ZAG}{1}{1}}{{ZAG}{1}{7}}{{ZAG}{1}{4}}}
-- to format continued fraction traditionally need to intercept it at the
-- formatNary of the "+"
concat [" \zag{",formatMml(first args, minPrec),"}{",
formatMml(first rest args,minPrec),"}"]
concat ["<mtext>not done yet for: ",op,"</mtext>"]
formatSub(expr : E, args : L E, opPrec : I) : S ==
-- This one produces differential notation partial derivatives.
-- It doesn't work in all cases and may not be workable, use
-- formatSub1 below for now.
-- At this time this is only to handle partial derivatives.
-- If the SUB case handles anything else I'm not aware of it.
-- This an example of the 4th partial of y(x,z) w.r.t. x,x,z,x
-- {{{SUB}{y}{{CONCAT}{{CONCAT}{{CONCAT}{{CONCAT}{,}{1}}
-- {{CONCAT}{,}{1}}}{{CONCAT}{,}{2}}}{{CONCAT}{,}{1}}}}{x}{z}}
atomE : L E := atomize(expr)
op : S := stringify first atomE
op ^= "SUB" => "<mtext>Mistake in formatSub: no SUB</mtext>"
stringify first rest rest atomE ^= "CONCAT" => _
"<mtext>Mistake in formatSub: no CONCAT</mtext>"
-- expecting form for atomE like
--[{SUB}{func}{CONCAT}...{CONCAT}{,}{n}{CONCAT}{,}{n}...{CONCAT}{,}{n}],
--counting the first CONCATs before the comma gives the number of
--derivatives
ndiffs : I := 0
tmpLE : L E := rest rest atomE
while stringify first tmpLE = "CONCAT" repeat
ndiffs := ndiffs+1
tmpLE := rest tmpLE
numLS : L S := nil
i : I := 1
while i < ndiffs repeat
numLS := append(numLS,list(stringify first rest tmpLE))
tmpLE := rest rest rest tmpLE
i := i+1
numLS := append(numLS,list(stringify first rest tmpLE))
-- numLS contains the numbers of the bound variables as strings
-- for the differentiations, thus for the differentiation [x,x,z,x]
-- for y(x,z) numLS = ["1","1","2","1"]
posLS : L S := nil
i := 0
-- sayTeX$Lisp "formatSub: nargs = "string(#args)
while i < #args repeat
posLS := append(posLS,list(string(i+1)))
i := i+1
-- posLS contains the positions of the bound variables in args
-- as a list of strings, for example, for the above example ["1","2"]
tmpS: S := stringify atomE.2
if ndiffs = 1 then
s : S := "<mfrac><mo>∂</mo><mi>"tmpS"</mi><mrow>"
else
s : S := "<mfrac><mrow><msup><mo>∂</mo><mn>"string(ndiffs)"</mn></msup><mi>"tmpS"</mi></mrow><mrow>"
-- need to find the order of the differentiation w.r.t. the i-th
-- variable
i := 1
j : I
k : I
tmpS: S
while i < #posLS+1 repeat
j := 0
k := 1
while k < #numLS + 1 repeat
if numLS.k = string i then j := j + 1
k := k+1
if j > 0 then
tmpS := stringify args.i
if j = 1 then
s := s"<mo>∂</mo><mi>"tmpS"</mi>"
else
s := s"<mo>∂</mo><msup><mi>"tmpS_
"</mi><mn>"string(j)"</mn></msup>"
i := i + 1
s := s"</mrow></mfrac><mo>(</mo>"
i := 1
while i < #posLS+1 repeat
tmpS := stringify args.i
s := s"<mi>"tmpS"</mi>"
if i < #posLS then s := s"<mo>,</mo>"
i := i+1
s := s"<mo>)</mo>"
formatSub1(expr : E, args : L E, opPrec : I) : S ==
-- This one produces partial derivatives notated by ",n" as
-- subscripts.
-- At this time this is only to handle partial derivatives.
-- If the SUB case handles anything else I'm not aware of it.
-- This an example of the 4th partial of y(x,z) w.r.t. x,x,z,x
-- {{{SUB}{y}{{CONCAT}{{CONCAT}{{CONCAT}{{CONCAT}{,}{1}}
-- {{CONCAT}{,}{1}}}{{CONCAT}{,}{2}}}{{CONCAT}{,}{1}}}}{x}{z}},
-- here expr is everything in the first set of braces and
-- args is {{x}{z}}
atomE : L E := atomize(expr)
op : S := stringify first atomE
op ^= "SUB" => "<mtext>Mistake in formatSub: no SUB</mtext>"
stringify first rest rest atomE ^= "CONCAT" => "<mtext>Mistake in formatSub: no CONCAT</mtext>"
-- expecting form for atomE like
--[{SUB}{func}{CONCAT}...{CONCAT}{,}{n}{CONCAT}{,}{n}...{CONCAT}{,}{n}],
--counting the first CONCATs before the comma gives the number of
--derivatives
ndiffs : I := 0
tmpLE : L E := rest rest atomE
while stringify first tmpLE = "CONCAT" repeat
ndiffs := ndiffs+1
tmpLE := rest tmpLE
numLS : L S := nil
i : I := 1
while i < ndiffs repeat
numLS := append(numLS,list(stringify first rest tmpLE))
tmpLE := rest rest rest tmpLE
i := i+1
numLS := append(numLS,list(stringify first rest tmpLE))
-- numLS contains the numbers of the bound variables as strings
-- for the differentiations, thus for the differentiation [x,x,z,x]
-- for y(x,z) numLS = ["1","1","2","1"]
posLS : L S := nil
i := 0
-- sayTeX$Lisp "formatSub: nargs = "string(#args)
while i < #args repeat
posLS := append(posLS,list(string(i+1)))
i := i+1
-- posLS contains the positions of the bound variables in args
-- as a list of strings, for example, for the above example ["1","2"]
funcS: S := stringify atomE.2
s : S := "<msub><mi>"funcS"</mi><mrow>"
i := 1
while i < #numLS+1 repeat
s := s"<mo>,</mo><mn>"numLS.i"</mn>"
i := i + 1
s := s"</mrow></msub><mo>(</mo>"
i := 1
while i < #posLS+1 repeat
-- tmpS := stringify args.i
tmpS := formatMml(first args,minPrec)
args := rest args
s := s"<mi>"tmpS"</mi>"
if i < #posLS then s := s"<mo>,</mo>"
i := i+1
s := s"<mo>)</mo>"
formatSuperSub(expr : E, args : L E, opPrec : I) : S ==
-- this produces prime notation ordinary derivatives.
-- first have to divine the semantics, add cases as needed
-- WriteLine$Lisp "SuperSub1 begin"
atomE : L E := atomize(expr)
op : S := stringify first atomE
-- WriteLine$Lisp "op: "op
op ^= "SUPERSUB" => _
"<mtext>Mistake in formatSuperSub: no SUPERSUB1</mtext>"
#args ^= 1 => "<mtext>Mistake in SuperSub1: #args <> 1</mtext>"
var : E := first args
-- should be looking at something like {{SUPERSUB}{var}{ }{,,...,}} for
-- example here's the second derivative of y w.r.t. x
-- {{{SUPERSUB}{y}{ }{,,}}{x}}, expr is the first {} and args is the
-- {x}
funcS : S := stringify first rest atomE
-- WriteLine$Lisp "funcS: "funcS
bvarS : S := stringify first args
-- WriteLine$Lisp "bvarS: "bvarS
-- count the number of commas
commaS : S := stringify first rest rest rest atomE
commaTest : S := ","
i : I := 0
while position(commaTest,commaS,1) > 0 repeat
i := i+1
commaTest := commaTest","
s : S := "<msup><mi>"funcS"</mi><mrow>"
-- WriteLine$Lisp "s: "s
j : I := 0
while j < i repeat
s := s"<mo>′</mo>"
j := j + 1
s := s"</mrow></msup><mo>⁡</mo><mo>(</mo>"_
formatMml(first args,minPrec)"<mo>)</mo>"
formatSuperSub1(expr : E, args : L E, opPrec : I) : S ==
-- This one produces ordinary derivatives with differential notation,
-- it needs a little more work yet.
-- first have to divine the semantics, add cases as needed
-- WriteLine$Lisp "SuperSub begin"
atomE : L E := atomize(expr)
op : S := stringify first atomE
op ^= "SUPERSUB" => _
"<mtext>Mistake in formatSuperSub: no SUPERSUB</mtext>"
#args ^= 1 => "<mtext>Mistake in SuperSub: #args <> 1</mtext>"
var : E := first args
-- should be looking at something like {{SUPERSUB}{var}{ }{,,...,}} for
-- example here's the second derivative of y w.r.t. x
-- {{{SUPERSUB}{y}{ }{,,}}{x}}, expr is the first {} and args is the
-- {x}
funcS : S := stringify first rest atomE
bvarS : S := stringify first args
-- count the number of commas
commaS : S := stringify first rest rest rest atomE
commaTest : S := ","
ndiffs : I := 0
while position(commaTest,commaS,1) > 0 repeat
ndiffs := ndiffs+1
commaTest := commaTest","
s : S := "<mfrac><mrow><msup><mo>ⅆ</mo><mn>"string(ndiffs)_
"</mn></msup><mi>"funcS"</mi></mrow><mrow><mo>ⅆ</mo><msup><mi>"_
formatMml(first args,minPrec)"</mi><mn>"string(ndiffs)_
"</mn></msup></mrow></mfrac><mo>⁡</mo><mo>(</mo><mi>"_
formatMml(first args,minPrec)"</mi><mo>)</mo>"
formatPlex(op : S, args : L E, prec : I) : S ==
checkarg:Boolean := false
hold : S
p : I := position(op,plexOps)
p < 1 => error "unknown plex op"
op = "INTSIGN" => formatIntSign(args,minPrec)
opPrec := plexPrecs.p
n : I := #args
(n ^= 2) and (n ^= 3) => error "wrong number of arguments for plex"
s : S :=
op = "SIGMA" =>
checkarg := true
"<mo>∑</mo>"
-- Sum
op = "SIGMA2" =>
checkarg := true
"<mo>∑</mo>"
-- Sum
op = "PI" =>
checkarg := true
"<mo>∏</mo>"
-- Product
op = "PI2" =>
checkarg := true
"<mo>∏</mo>"
-- Product
-- op = "INTSIGN" => "<mo>∫</mo>"
-- Integral, int
op = "INDEFINTEGRAL" => "<mo>∫</mo>"
-- Integral, int
"????"
hold := formatMml(first args,minPrec)
args := rest args
if op ^= "INDEFINTEGRAL" then
if hold ^= "" then
s := concat ["<munderover>",s,group hold]
else
s := concat ["<munderover>",s,group " "]
if not null rest args then
hold := formatMml(first args,minPrec)
if hold ^= "" then
s := concat [s,group hold,"</munderover>"]
else
s := concat [s,group " ","</munderover>"]
args := rest args
-- if checkarg true need to test op arg for "+" at least
-- and wrap parentheses if so
if checkarg then
la : L E := (first args pretend L E)
opa : S := stringify first la
if opa = "+" then
s :=
concat [s,"<mo>(</mo>",formatMml(first args,minPrec),"<mo>)</mo>"]
else s := concat [s,formatMml(first args,minPrec)]
else s := concat [s,formatMml(first args,minPrec)]
else
hold := group concat [hold,formatMml(first args,minPrec)]
s := concat [s,hold]
-- if opPrec < prec then s := parenthesize s
-- getting ugly parentheses on fractions
group s
formatIntSign(args : L E, opPrec : I) : S ==
-- the original OutputForm expression looks something like this:
-- {{INTSIGN}{NOTHING or lower limit?}
-- {bvar or upper limit?}{{*}{integrand}{{CONCAT}{d}{axiom var}}}}
-- the args list passed here consists of the rest of this list,
-- starting at the NOTHING or ...
(stringify first args) = "NOTHING" =>
-- the bound variable is the second one in the argument list
bvar : E := first rest args
bvarS : S := stringify bvar
tmpS : S
i : I := 0
u1 : US
u2 : US
-- this next one atomizes the integrand plus differential
atomE : L E := atomize(first rest rest args)
-- pick out the bound variable used by axiom
varRS : S := stringify last(atomE)
tmpLE : L E := ((first rest rest args) pretend L E)
integrand : S := formatMml(first rest tmpLE,minPrec)
-- replace the bound variable, axiom uses someting of the form
-- %A for the bound variable and puts the original variable used
-- in the input command as a superscript on the integral sign.
-- I'm assuming that the axiom variable is 2 characters.
while (i := position(varRS,integrand,i+1)) > 0 repeat
u1 := segment(1,i-1)$US
u2 := segment(i+2,#integrand)$US
integrand := concat [integrand.u1,bvarS,integrand.u2]
concat ["<mrow><mo>∫</mo>" integrand _
"<mo>ⅆ</mo><mi>" bvarS "</mi></mrow>"]
lowlim : S := stringify first args
highlim : S := stringify first rest args
bvar : E := last atomize(first rest rest args)
bvarS : S := stringify bvar
tmpLE : L E := ((first rest rest args) pretend L E)
integrand : S := formatMml(first rest tmpLE,minPrec)
concat ["<mrow><munderover><mo>∫</mo><mi>" lowlim "</mi><mi>" highlim "</mi></munderover>" integrand "<mo>ⅆ</mo><mi>" bvarS "</mi></mrow>"]
formatMatrix(args : L E) : S ==
-- format for args is [[ROW ...],[ROW ...],[ROW ...]]
-- generate string for formatting columns (centered)
group addBrackets concat
["<mtable><mtr><mtd>",formatNaryNoGroup("</mtd></mtr><mtr><mtd>",args,minPrec),
"</mtd></mtr></mtable>"]
formatFunction(op : S, args : L E, prec : I) : S ==
group concat ["<mo>",op,"</mo>",parenthesize formatNary(",",args,minPrec)]
formatNullary(op : S) ==
op = "NOTHING" => ""
group concat ["<mo>",op,"</mo><mo>(</mo><mo>)</mo>"]
formatUnary(op : S, arg : E, prec : I) ==
p : I := position(op,unaryOps)
p < 1 => error "unknown unary op"
opPrec := unaryPrecs.p
s : S := concat ["<mo>",op,"</mo>",formatMml(arg,opPrec)]
opPrec < prec => group parenthesize s
op = "-" => s
group s
formatBinary(op : S, args : L E, prec : I) : S ==
p : I := position(op,binaryOps)
p < 1 => error "unknown binary op"
opPrec := binaryPrecs.p
-- if base op is product or sum need to add parentheses
if ATOM(first args)$Lisp@Boolean then
opa:S := stringify first args
else
la : L E := (first args pretend L E)
opa : S := stringify first la
if (opa = "SIGMA" or opa = "SIGMA2" or opa = "PI" or opa = "PI2") _
and op = "**" then
s1:S:=concat ["<mo>(</mo>",formatMml(first args, opPrec),"<mo>)</mo>"]
else
s1 : S := formatMml(first args, opPrec)
s2 : S := formatMml(first rest args, opPrec)
op :=
op = "|" => s := concat ["<mrow>",s1,"</mrow><mo>",op,"</mo><mrow>",s2,"</mrow>"]
op = "**" => s := concat ["<msup><mrow>",s1,"</mrow><mrow>",s2,"</mrow></msup>"]
op = "/" => s := concat ["<mfrac><mrow>",s1,"</mrow><mrow>",s2,"</mrow></mfrac>"]
op = "OVER" => s := concat ["<mfrac><mrow>",s1,"</mrow><mrow>",s2,"</mrow></mfrac>"]
op = "+->" => s := concat ["<mrow>",s1,"</mrow><mo>",op,"</mo><mrow>",s2,"</mrow>"]
s := concat ["<mrow>",s1,"</mrow><mo>",op,"</mo><mrow>",s2,"</mrow>"]
group
op = "OVER" => s
-- opPrec < prec => parenthesize s
-- ugly parentheses?
s
formatNary(op : S, args : L E, prec : I) : S ==
group formatNaryNoGroup(op, args, prec)
formatNaryNoGroup(op : S, args : L E, prec : I) : S ==
checkargs:Boolean := false
null args => ""
p : I := position(op,naryOps)
p < 1 => error "unknown nary op"
-- need to test for "ZAG" case and divert it here
-- ex 1. continuedFraction(314159/100000)
-- {{+}{3}{{ZAG}{1}{7}}{{ZAG}{1}{15}}{{ZAG}{1}{1}}{{ZAG}{1}{25}}
-- {{ZAG}{1}{1}}{{ZAG}{1}{7}}{{ZAG}{1}{4}}}
-- this is the preconditioned output form
-- including "op", the args list would be the rest of this
-- i.e op = '+' and args = {{3}{{ZAG}{1}{7}}{{ZAG}{1}{15}}
-- {{ZAG}{1}{1}}{{ZAG}{1}{25}}{{ZAG}{1}{1}}{{ZAG}{1}{7}}{{ZAG}{1}{4}}}
-- ex 2. continuedFraction(14159/100000)
-- this one doesn't have the leading integer
-- {{+}{{ZAG}{1}{7}}{{ZAG}{1}{15}}{{ZAG}{1}{1}}{{ZAG}{1}{25}}
-- {{ZAG}{1}{1}}{{ZAG}{1}{7}}{{ZAG}{1}{4}}}
--
-- ex 3. continuedFraction(3,repeating [1], repeating [3,6])
-- {{+}{3}{{ZAG}{1}{3}}{{ZAG}{1}{6}}{{ZAG}{1}{3}}{{ZAG}{1}{6}}
-- {{ZAG}{1}{3}}{{ZAG}{1}{6}}{{ZAG}{1}{3}}{{ZAG}{1}{6}}
-- {{ZAG}{1}{3}}{{ZAG}{1}{6}}{...}}
-- In each of these examples the args list consists of the terms
-- following the '+' op
-- so the first arg could be a "ZAG" or something
-- else, but the second arg looks like it has to be "ZAG", so maybe
-- test for #args > 1 and args.2 contains "ZAG".
-- Note that since the resulting MathML <mfrac>s are nested we need
-- to handle the whole continued fraction at once, we can't
-- just look, for example, {{ZAG}{1}{6}}
(#args > 1) and (position("ZAG",stringify first rest args,1) > 0) =>
tmpS : S := stringify first args
position("ZAG",tmpS,1) > 0 => formatZag(args)
-- position("ZAG",tmpS,1) > 0 => formatZag1(args)
concat [formatMml(first args,minPrec) "<mo>+</mo>" _
formatZag(rest args)]
-- At least for the ops "*","+","-" we need to test to see if a sigma
-- or pi is one of their arguments because we might need parentheses
-- as indicated by the problem with
-- summation(operator(f)(i),i=1..n)+1 versus
-- summation(operator(f)(i)+1,i=1..n) having identical displays as
-- of 2007-21-21
op :=
op = "," => "<mo>,</mo>" --originally , \:
op = ";" => "<mo>;</mo>" --originally ; \: should figure these out
op = "*" => "<mspace width='0.3em'/>"
-- InvisibleTimes
op = " " => "<mspace width='0.5em'/>"
op = "ROW" => "</mtd><mtd>"
op = "+" =>
checkargs := true
"<mo>+</mo>"
op = "-" =>
checkargs := true
"<mo>-</mo>"
op
l : L S := nil
opPrec := naryPrecs.p
-- if checkargs is true check each arg except last one to see if it's
-- a sigma or pi and if so add parentheses. Other op's may have to be
-- checked for in future
count:I := 1
for a in args repeat
-- WriteLine$Lisp "checking args"
if checkargs then
if count < #args then
-- check here for sum or product
if ATOM(a)$Lisp@Boolean then
opa:S := stringify a
else
la : L E := (a pretend L E)
opa : S := stringify first la
if opa = "SIGMA" or opa = "SIGMA2" or _
opa = "PI" or opa = "PI2" then
l := concat(op,concat(_
concat ["<mo>(</mo>",formatMml(a,opPrec),_
"<mo>)</mo>"],l)$L(S))$L(S)
else l := concat(op,concat(formatMml(a,opPrec),l)$L(S))$L(S)
else l := concat(op,concat(formatMml(a,opPrec),l)$L(S))$L(S)
else l := concat(op,concat(formatMml(a,opPrec),l)$L(S))$L(S)
count := count + 1
s : S := concat reverse rest l
opPrec < prec => parenthesize s
s
formatZag(args : L E) : S ==
-- args will be a list of things like this {{ZAG}{1}{7}}, the ZAG
-- must be there, the '1' and '7' could conceivably be more complex
-- expressions
tmpZag : L E := first args pretend L E
-- may want to test that tmpZag contains 'ZAG'
#args > 1 => "<mfrac>"formatMml(first rest tmpZag,minPrec)"<mrow><mn>"formatMml(first rest rest tmpZag,minPrec)"</mn><mo>+</mo>"formatZag(rest args)"</mrow></mfrac>"
-- EQUAL(tmpZag, "...")$Lisp => "<mo>…</mo>"
(first args = "..."::E)@Boolean => "<mo>…</mo>"
position("ZAG",stringify first args,1) > 0 =>
"<mfrac>"formatMml(first rest tmpZag,minPrec)formatMml(first rest rest tmpZag,minPrec)"</mfrac>"
"<mtext>formatZag: Unexpected kind of ZAG</mtext>"
formatZag1(args : L E) : S ==
-- make alternative ZAG format without diminishing fonts, maybe
-- use a table
-- {{ZAG}{1}{7}}
tmpZag : L E := first args pretend L E
#args > 1 => "<mfrac>"formatMml(first rest tmpZag,minPrec)"<mrow><mn>"formatMml(first rest rest tmpZag,minPrec)"</mn><mo>+</mo>"formatZag(rest args)"</mrow></mfrac>"
(first args = "...":: E)@Boolean => "<mo>…</mo>"
error "formatZag1: Unexpected kind of ZAG"
formatMml(expr : E,prec : I) ==
i,len : Integer
intSplitLen : Integer := 20
ATOM(expr)$Lisp@Boolean =>
str := stringify expr
len := #str
-- this bit seems to deal with integers
INTEGERP$Lisp expr =>
i := expr pretend Integer
if (i < 0) or (i > 9)
then
group
nstr : String := ""
-- insert some blanks into the string, if too long
while ((len := #str) > intSplitLen) repeat
nstr := concat [nstr," ",
elt(str,segment(1,intSplitLen)$US)]
str := elt(str,segment(intSplitLen+1)$US)
empty? nstr => concat ["<mn>",str,"</mn>"]
nstr :=
empty? str => nstr
concat [nstr," ",str]
concat ["<mn>",elt(nstr,segment(2)$US),"</mn>"]
else str := concat ["<mn>",str,"</mn>"]
str = "%pi" => "<mi>π</mi>"
-- pi
str = "%e" => "<mi>ⅇ</mi>"
-- ExponentialE
str = "%i" => "<mi>ⅈ</mi>"
-- ImaginaryI
len > 0 and str.1 = char "%" => concat(concat("<mi>",str),"</mi>")
-- should handle floats
len > 1 and digit? str.1 => concat ["<mn>",str,"</mn>"]
-- presumably this is a literal string
len > 0 and str.1 = char "_"" =>
concat(concat("<mtext>",str),"</mtext>")
len = 1 and str.1 = char " " => " "
(i := position(str,specialStrings)) > 0 =>
specialStringsInMML.i
(i := position(char " ",str)) > 0 =>
-- We want to preserve spacing, so use a roman font.
-- What's this for? Leave the \rm in for now so I can see
-- where it arises. Removed 2007-02-14
concat(concat("<mtext>",str),"</mtext>")
-- if we get to here does that mean it's a variable?
concat ["<mi>",str,"</mi>"]
l : L E := (expr pretend L E)
null l => blank
op : S := stringify first l
args : L E := rest l
nargs : I := #args
-- need to test here in case first l is SUPERSUB case and then
-- pass first l and args to formatSuperSub.
position("SUPERSUB",op,1) > 0 =>
formatSuperSub(first l,args,minPrec)
-- now test for SUB
position("SUB",op,1) > 0 =>
formatSub1(first l,args,minPrec)
-- special cases
member?(op, specialOps) => formatSpecial(op,args,prec)
member?(op, plexOps) => formatPlex(op,args,prec)
-- nullary case
0 = nargs => formatNullary op
-- unary case
(1 = nargs) and member?(op, unaryOps) =>
formatUnary(op, first args, prec)
-- binary case
(2 = nargs) and member?(op, binaryOps) =>
formatBinary(op, args, prec)
-- nary case
member?(op,naryNGOps) => formatNaryNoGroup(op,args, prec)
member?(op,naryOps) => formatNary(op,args, prec)
op := formatMml(first l,minPrec)
formatFunction(op,args,prec)
|