This file is indexed.

/usr/share/axiom-20170501/src/algebra/MODFIELD.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
)abbrev domain MODFIELD ModularField
++ Author: Mark Botch
++ Description:
++ These domains are used for the factorization and gcds
++ of univariate polynomials over the integers in order to work modulo
++ different  primes.
++ See \spadtype{ModularRing}, \spadtype{EuclideanModularRing} 

ModularField(R,Mod,reduction,merge,exactQuo) : SIG == CODE where
  R : CommutativeRing
  Mod : AbelianMonoid
  reduction : (R,Mod) -> R
  merge : (Mod,Mod) -> Union(Mod,"failed")
  exactQuo : (R,R,Mod) -> Union(R,"failed")

  SIG ==> Field with

    modulus : % -> Mod
      ++ modulus(x) is not documented

    coerce : % -> R
      ++ coerce(x) is not documented

    reduce : (R,Mod) -> %
      ++ reduce(r,m) is not documented

    exQuo : (%,%) -> Union(%,"failed")
      ++ exQuo(x,y) is not documented

  CODE ==> ModularRing(R,Mod,reduction,merge,exactQuo)