/usr/share/axiom-20170501/src/algebra/MODOP.spad is in axiom-source 20170501-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 | )abbrev domain MODOP ModuleOperator
++ Author: Manuel Bronstein
++ Date Created: 15 May 1990
++ Date Last Updated: 17 June 1993
++ Description:
++ Algebra of ADDITIVE operators on a module.
ModuleOperator(R,M) : SIG == CODE where
R : Ring
M : LeftModule(R)
O ==> OutputForm
OP ==> BasicOperator
FG ==> FreeGroup OP
RM ==> Record(coef:R, monom:FG)
TERM ==> List RM
FAB ==> FreeAbelianGroup TERM
OPADJ ==> "%opAdjoint"
OPEVAL ==> "%opEval"
INVEVAL ==> "%invEval"
SIG ==> Join(Ring, RetractableTo R, RetractableTo OP,
Eltable(M, M)) with
if R has CharacteristicZero then CharacteristicZero
if R has CharacteristicNonZero then CharacteristicNonZero
if R has CommutativeRing then
Algebra(R)
adjoint : $ -> $
++ adjoint(op) returns the adjoint of the operator \spad{op}.
adjoint : ($, $) -> $
++ adjoint(op1, op2) sets the adjoint of op1 to be op2.
++ op1 must be a basic operator
conjug : R -> R
++ conjug(x)should be local but conditional
evaluate : ($, M -> M) -> $
++ evaluate(f, u +-> g u) attaches the map g to f.
++ f must be a basic operator
++ g MUST be additive, \spad{g(a + b) = g(a) + g(b)} for
++ any \spad{a}, \spad{b} in M.
++ This implies that \spad{g(n a) = n g(a)} for
++ any \spad{a} in M and integer \spad{n > 0}.
evaluateInverse : ($, M -> M) -> $
++ evaluateInverse(x,f) is not documented
"**" : (OP, Integer) -> $
++ op**n is not documented
"**" : ($, Integer) -> $
++ op**n is not documented
opeval : (OP, M) -> M
++ opeval should be local but conditional
makeop : (R, FG) -> $
++ makeop should be local but conditional
CODE ==> FAB add
import NoneFunctions1($)
import BasicOperatorFunctions1(M)
Rep := FAB
inv : TERM -> $
termeval : (TERM, M) -> M
rmeval : (RM, M) -> M
monomeval: (FG, M) -> M
opInvEval: (OP, M) -> M
mkop : (R, FG) -> $
termprod0: (Integer, TERM, TERM) -> $
termprod : (Integer, TERM, TERM) -> TERM
termcopy : TERM -> TERM
trm2O : (Integer, TERM) -> O
term2O : TERM -> O
rm2O : (R, FG) -> O
nocopy : OP -> $
1 == makeop(1, 1)
coerce(n:Integer):$ == n::R::$
coerce(r:R):$ == (zero? r => 0; makeop(r, 1))
coerce(op:OP):$ == nocopy copy op
nocopy(op:OP):$ == makeop(1, op::FG)
elt(x:$, r:M) == +/[t.exp * termeval(t.gen, r) for t in terms x]
rmeval(t, r) == t.coef * monomeval(t.monom, r)
termcopy t == [[rm.coef, rm.monom] for rm in t]
characteristic() == characteristic()$R
mkop(r, fg) == [[r, fg]$RM]$TERM :: $
evaluate(f, g) == nocopy setProperty(retract(f)@OP,OPEVAL,g pretend None)
if R has OrderedSet then
makeop(r, fg) == (r >= 0 => mkop(r, fg); - mkop(-r, fg))
else
makeop(r, fg) == mkop(r, fg)
inv(t:TERM):$ ==
empty? t => 1
c := first(t).coef
m := first(t).monom
inv(rest t) * makeop(1, inv m) * (recip(c)::R::$)
x:$ ** i:Integer ==
i = 0 => 1
i > 0 => expt(x,i pretend PositiveInteger)$RepeatedSquaring($)
(inv(retract(x)@TERM)) ** (-i)
evaluateInverse(f, g) ==
nocopy setProperty(retract(f)@OP, INVEVAL, g pretend None)
coerce(x:$):O ==
zero? x => (0$R)::O
reduce(_+, [trm2O(t.exp, t.gen) for t in terms x])$List(O)
trm2O(c, t) ==
(c = 1) => term2O t
c = -1 => - term2O t
c::O * term2O t
term2O t ==
reduce(_*, [rm2O(rm.coef, rm.monom) for rm in t])$List(O)
rm2O(c, m) ==
(c = 1) => m::O
(m = 1) => c::O
c::O * m::O
x:$ * y:$ ==
+/[ +/[termprod0(t.exp * s.exp, t.gen, s.gen) for s in terms y]
for t in terms x]
termprod0(n, x, y) ==
n >= 0 => termprod(n, x, y)::$
- (termprod(-n, x, y)::$)
termprod(n, x, y) ==
lc := first(xx := termcopy x)
lc.coef := n * lc.coef
rm := last xx
((first(y).coef) = 1) =>
rm.monom := rm.monom * first(y).monom
concat_!(xx, termcopy rest y)
((rm.monom) = 1) =>
rm.coef := rm.coef * first(y).coef
rm.monom := first(y).monom
concat_!(xx, termcopy rest y)
concat_!(xx, termcopy y)
if M has ExpressionSpace then
opeval(op, r) ==
(func := property(op, OPEVAL)) case "failed" => kernel(op, r)
((func::None) pretend (M -> M)) r
else
opeval(op, r) ==
(func := property(op, OPEVAL)) case "failed" =>
error "eval: operator has no evaluation function"
((func::None) pretend (M -> M)) r
opInvEval(op, r) ==
(func := property(op, INVEVAL)) case "failed" =>
error "eval: operator has no inverse evaluation function"
((func::None) pretend (M -> M)) r
termeval(t, r) ==
for rm in reverse t repeat r := rmeval(rm, r)
r
monomeval(m, r) ==
for rec in reverse_! factors m repeat
e := rec.exp
g := rec.gen
e > 0 =>
for i in 1..e repeat r := opeval(g, r)
e < 0 =>
for i in 1..(-e) repeat r := opInvEval(g, r)
r
recip x ==
(r := retractIfCan(x)@Union(R, "failed")) case "failed" => "failed"
(r1 := recip(r::R)) case "failed" => "failed"
r1::R::$
retractIfCan(x:$):Union(R, "failed") ==
(r:= retractIfCan(x)@Union(TERM,"failed")) case "failed" => "failed"
empty?(t := r::TERM) => 0$R
empty? rest t =>
rm := first t
(rm.monom = 1) => rm.coef
"failed"
"failed"
retractIfCan(x:$):Union(OP, "failed") ==
(r:= retractIfCan(x)@Union(TERM,"failed")) case "failed" => "failed"
empty?(t := r::TERM) => "failed"
empty? rest t =>
rm := first t
(rm.coef = 1) => retractIfCan(rm.monom)
"failed"
"failed"
if R has CommutativeRing then
termadj : TERM -> $
rmadj : RM -> $
monomadj : FG -> $
opadj : OP -> $
r:R * x:$ == r::$ * x
x:$ * r:R == x * (r::$)
adjoint x == +/[t.exp * termadj(t.gen) for t in terms x]
rmadj t == conjug(t.coef) * monomadj(t.monom)
adjoint(op, adj) == nocopy setProperty(retract(op)@OP, OPADJ, adj::None)
termadj t ==
ans:$ := 1
for rm in t repeat ans := rmadj(rm) * ans
ans
monomadj m ==
ans:$ := 1
for rec in factors m repeat ans := (opadj(rec.gen) ** rec.exp) * ans
ans
opadj op ==
(adj := property(op, OPADJ)) case "failed" =>
error "adjoint: operator does not have a defined adjoint"
(adj::None) pretend $
if R has conjugate:R -> R then
conjug r == conjugate r else conjug r == r
|