This file is indexed.

/usr/share/axiom-20170501/src/algebra/MSET.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
)abbrev domain MSET Multiset
++ Author:Stephen M. Watt, William H. Burge, Richard D. Jenks, Frederic Lehobey
++ Date Created:NK
++ Date Last Updated: 14 June 1994
++ Description: 
++ A multiset is a set with multiplicities.

Multiset(S) : SIG == CODE where
  S : SetCategory

  SIG ==> MultisetAggregate S with

    finiteAggregate
    shallowlyMutable

    multiset : () -> %
      ++ multiset()$D creates an empty multiset of domain D.
      ++
      ++X m:=multiset()@Multiset(Integer)

    multiset : S -> %
      ++ multiset(s) creates a multiset with singleton s.
      ++
      ++X multiset(3)

    multiset : List S -> %
      ++ multiset(ls) creates a multiset with elements from \spad{ls}.
      ++
      ++X s := multiset [1,2,3,4,5,4,3,2,3,4,5,6,7,4,10]

    members : % -> List S
      ++ members(ms) returns a list of the elements of \spad{ms}
      ++ without their multiplicity. See also \spadfun{parts}.
      ++
      ++X s := multiset [1,2,3,4,5,4,3,2,3,4,5,6,7,4,10]
      ++X members(s)

    remove : (S,%,Integer) -> %
      ++ remove(x,ms,number) removes at most \spad{number} copies of
      ++ element x if \spad{number} is positive, all of them if
      ++ \spad{number} equals zero, and all but at most \spad{-number} if
      ++ \spad{number} is negative.
      ++
      ++X s := multiset [1,2,3,4,5,4,3,2,3,4,5,6,7,4,10]
      ++X remove(3,s,2)
      ++X remove(3,s,0)
      ++X remove(3,s,-2)

    remove : ( S -> Boolean ,%,Integer) -> %
      ++ remove(p,ms,number) removes at most \spad{number} copies of
      ++ elements x such that \spad{p(x)} is \spadfun{true}
      ++ if \spad{number} is positive, all of them if
      ++ \spad{number} equals zero, and all but at most \spad{-number} if
      ++ \spad{number} is negative.
      ++
      ++X f(x) == x < 4
      ++X s := multiset [1,2,3,4,5,4,3,2,3,4,5,6,7,4,10]
      ++X remove(f,s,2)
      ++X remove(f,s,0)
      ++X remove(f,s,-2)

    remove_! : (S,%,Integer) -> %
      ++ remove!(x,ms,number) removes destructively at most \spad{number}
      ++ copies of element x if \spad{number} is positive, all
      ++ of them if \spad{number} equals zero, and all but at most
      ++ \spad{-number} if \spad{number} is negative.
      ++
      ++X s := multiset [1,2,3,4,5,4,3,2,3,4,5,6,7,4,10]
      ++X remove!(3,s,2)
      ++X s := multiset [1,2,3,4,5,4,3,2,3,4,5,6,7,4,10]
      ++X remove!(3,s,0)
      ++X s := multiset [1,2,3,4,5,4,3,2,3,4,5,6,7,4,10]
      ++X remove!(3,s,-2)

    remove_! : ( S -> Boolean ,%,Integer) -> %
      ++ remove!(p,ms,number) removes destructively at most \spad{number}
      ++ copies of elements x such that \spad{p(x)} is
      ++ \spadfun{true} if \spad{number} is positive, all of them if
      ++ \spad{number} equals zero, and all but at most \spad{-number} if
      ++ \spad{number} is negative.
      ++
      ++X f(x) == x < 4
      ++X s := multiset [1,2,3,4,5,4,3,2,3,4,5,6,7,4,10]
      ++X remove!(f,s,2)
      ++X s := multiset [1,2,3,4,5,4,3,2,3,4,5,6,7,4,10]
      ++X remove!(f,s,0)
      ++X s := multiset [1,2,3,4,5,4,3,2,3,4,5,6,7,4,10]
      ++X remove!(f,s,-2)

  CODE ==> add

        Tbl ==> Table(S, Integer)
        tbl ==> table$Tbl
        Rep := Record(count: Integer, table: Tbl)

        n: Integer
        ms, m1, m2: %
        t,  t1, t2: Tbl
        D ==> Record(entry: S, count: NonNegativeInteger)
        K ==> Record(key: S, entry: Integer)

        elt(t:Tbl, s:S):Integer ==
          a := search(s,t)$Tbl
          a case "failed" => 0
          a::Integer

        empty():% == [0,tbl()]

        multiset():% == empty()

        dictionary():% == empty() -- DictionaryOperations

        set():% == empty()

        brace():% == empty()

        construct(l:List S):% ==
            t := tbl()
            n := 0
            for e in l repeat
              t.e := inc t.e
              n := inc n
            [n, t]

        multiset(l:List S):% == construct l

        bag(l:List S):% == construct l         -- BagAggregate

        dictionary(l:List S):% == construct l -- DictionaryOperations

        set(l:List S):% == construct l

        brace(l:List S):% == construct l

        multiset(s:S):% == construct [s]

        if S has ConvertibleTo InputForm then
          convert(ms:%):InputForm ==
            convert [convert("multiset"::Symbol)@InputForm,
             convert(parts ms)@InputForm]

        members(ms:%):List S == keys ms.table

        coerce(ms:%):OutputForm ==
            l: List OutputForm := empty()
            t := ms.table
            colon := ": " :: OutputForm
            for e in keys t repeat
                ex := e::OutputForm
                n := t.e
                item :=
                  n > 1 => hconcat [n :: OutputForm,colon, ex]
                  ex
                l := cons(item,l)
            brace l

        duplicates(ms:%):List D == -- MultiDictionary
          ld : List D := empty()
          t := ms.table
          for e in keys t | (n := t.e) > 1 repeat
            ld := cons([e,n::NonNegativeInteger],ld)
          ld

        extract_!(ms:%):S ==         -- BagAggregate
          empty? ms => error "extract: Empty multiset"
          ms.count := dec ms.count
          t := ms.table
          e := inspect(t).key
          if (n := t.e) > 1 then t.e := dec n
           else remove_!(e,t)
          e

        inspect(ms:%):S == inspect(ms.table).key  -- BagAggregate

        insert_!(e:S,ms:%):% ==                  -- BagAggregate
            ms.count   := inc ms.count
            ms.table.e := inc ms.table.e
            ms

        member?(e:S,ms:%):Boolean == member?(e,keys ms.table)

        empty?(ms:%):Boolean == ms.count = 0

        #(ms:%):NonNegativeInteger == ms.count::NonNegativeInteger

        count(e:S, ms:%):NonNegativeInteger == ms.table.e::NonNegativeInteger

        remove_!(e:S, ms:%, max:Integer):% ==
          zero? max => remove_!(e,ms)
          t := ms.table
          if member?(e, keys t) then
            ((n := t.e) <= max) =>
              remove_!(e,t)
              ms.count := ms.count-n
            max > 0 =>
              t.e := n-max
              ms.count := ms.count-max
            (n := n+max) > 0 =>
              t.e := -max
              ms.count := ms.count-n
          ms

        remove_!(p: S -> Boolean, ms:%, max:Integer):% ==
          zero? max => remove_!(p,ms)
          t := ms.table
          for e in keys t | p(e) repeat
            ((n := t.e) <= max) =>
              remove_!(e,t)
              ms.count := ms.count-n
            max > 0 =>
              t.e := n-max
              ms.count := ms.count-max
            (n := n+max) > 0 =>
              t.e := -max
              ms.count := ms.count-n
          ms

        remove(e:S, ms:%, max:Integer):% == remove_!(e, copy ms, max)

        remove(p: S -> Boolean,ms:%,max:Integer):% == remove_!(p, copy ms, max)

        remove_!(e:S, ms:%):% == -- DictionaryOperations
          t := ms.table
          if member?(e, keys t) then
            ms.count := ms.count-t.e
            remove_!(e, t)
          ms

        remove_!(p:S ->Boolean, ms:%):% == -- DictionaryOperations
          t := ms.table
          for e in keys t | p(e) repeat
            ms.count := ms.count-t.e
            remove_!(e, t)
          ms

        select_!(p: S -> Boolean, ms:%):% == -- DictionaryOperations
          remove_!((s1:S):Boolean+->not p(s1), ms)

        removeDuplicates_!(ms:%):% == -- MultiDictionary
          t := ms.table
          l := keys t
          for e in l repeat t.e := 1
          ms.count := #l
          ms

        insert_!(e:S,ms:%,more:NonNegativeInteger):% == -- MultiDictionary
            ms.count   := ms.count+more
            ms.table.e := ms.table.e+more
            ms

        map_!(f: S->S, ms:%):% == -- HomogeneousAggregate
          t := ms.table
          t1 := tbl()
          for e in keys t repeat
            t1.f(e) := t.e
            remove_!(e, t)
          ms.table := t1
          ms

        map(f: S -> S, ms:%):% == map_!(f, copy ms) -- HomogeneousAggregate

        parts(m:%):List S ==
          l := empty()$List(S)
          t := m.table
          for e in keys t repeat
            for i in 1..t.e repeat
              l := cons(e,l)
          l

        union(m1:%, m2:%):% ==
            t := tbl()
            t1:= m1.table
            t2:= m2.table
            for e in keys t1 repeat t.e := t1.e
            for e in keys t2 repeat t.e := t2.e + t.e
            [m1.count + m2.count, t]

        intersect(m1:%, m2:%):% ==
            t := tbl()
            t1:= m1.table
            t2:= m2.table
            n := 0
            for e in keys t1 repeat
              m := min(t1.e,t2.e)
              m > 0 =>
                m := t1.e + t2.e
                t.e := m
                n := n + m
            [n, t]

        difference(m1:%, m2:%):% ==
            t := tbl()
            t1:= m1.table
            t2:= m2.table
            n := 0
            for e in keys t1 repeat
              k1 := t1.e
              k2 := t2.e
              k1 > 0 and k2 = 0 =>
                t.e := k1
                n := n + k1
            n = 0 => empty()
            [n, t]

        symmetricDifference(m1:%, m2:%):% ==
            union(difference(m1,m2), difference(m2,m1))

        m1 = m2 ==
            m1.count ^= m2.count => false
            t1 := m1.table
            t2 := m2.table
            for e in keys t1 repeat
                t1.e ^= t2.e => return false
            for e in keys t2 repeat
                t1.e ^= t2.e => return false
            true

        m1 < m2 ==
            m1.count >= m2.count => false
            t1 := m1.table
            t2 := m2.table
            for e in keys t1 repeat
                t1.e > t2.e => return false
            m1.count < m2.count

        subset?(m1:%, m2:%):Boolean ==
            m1.count > m2.count => false
            t1 := m1.table
            t2 := m2.table
            for e in keys t1 repeat t1.e > t2.e => return false
            true