This file is indexed.

/usr/share/axiom-20170501/src/algebra/MTSCAT.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
)abbrev category MTSCAT MultivariateTaylorSeriesCategory
++ Author: Clifton J. Williamson
++ Date Created: 6 March 1990
++ Date Last Updated: 6 March 1990
++ Description:
++ \spadtype{MultivariateTaylorSeriesCategory} is the most general
++ multivariate Taylor series category.

MultivariateTaylorSeriesCategory(Coef,Var) : Category == SIG where
  Coef : Ring
  Var : OrderedSet

  L   ==> List
  NNI ==> NonNegativeInteger
  PDR ==> PartialDifferentialRing(Var)
  PSC ==> PowerSeriesCategory(Coef,IndexedExponents(Var),Var)
  IE  ==> InnerEvalable(Var,%)
  EV  ==> Evalable(%)

  SIG ==> Join(PDR,PSC,IE,EV) with

    coefficient : (%,Var,NNI) -> %
      ++ \spad{coefficient(f,x,n)} returns the coefficient of \spad{x^n} in f.

    coefficient : (%,L Var,L NNI) -> %
      ++ \spad{coefficient(f,[x1,x2,...,xk],[n1,n2,...,nk])} returns the
      ++ coefficient of \spad{x1^n1 * ... * xk^nk} in f.

    extend : (%,NNI) -> %
      ++ \spad{extend(f,n)} causes all terms of f of degree
      ++ \spad{<= n} to be computed.

    monomial : (%,Var,NNI) -> %
      ++ \spad{monomial(a,x,n)} returns  \spad{a*x^n}.

    monomial : (%,L Var,L NNI) -> %
      ++ \spad{monomial(a,[x1,x2,...,xk],[n1,n2,...,nk])} returns
      ++ \spad{a * x1^n1 * ... * xk^nk}.

    order : (%,Var) -> NNI
      ++ \spad{order(f,x)} returns the order of f viewed as a series in x
      ++ may result in an infinite loop if f has no non-zero terms.

    order : (%,Var,NNI) -> NNI
      ++ \spad{order(f,x,n)} returns \spad{min(n,order(f,x))}.

    polynomial : (%,NNI) -> Polynomial Coef
      ++ \spad{polynomial(f,k)} returns a polynomial consisting of the sum
      ++ of all terms of f of degree \spad{<= k}.

    polynomial : (%,NNI,NNI) -> Polynomial Coef
      ++ \spad{polynomial(f,k1,k2)} returns a polynomial consisting of the
      ++ sum of all terms of f of degree d with \spad{k1 <= d <= k2}.

    if Coef has Algebra Fraction Integer then

      integrate : (%,Var) -> %
        ++ \spad{integrate(f,x)} returns the anti-derivative of the power
        ++ series \spad{f(x)} with respect to the variable x with constant
        ++ coefficient 1.  We may integrate a series when we can divide
        ++ coefficients by integers.

      RadicalCategory
        --++ We provide rational powers when we can divide coefficients
        --++ by integers.

      TranscendentalFunctionCategory
        --++ We provide transcendental functions when we can divide
        --++ coefficients by integers.