This file is indexed.

/usr/share/axiom-20170501/src/algebra/MULTFACT.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
)abbrev package MULTFACT MultivariateFactorize
++ Author: P. Gianni
++ Date Created: 1983
++ Date Last Updated: Sept. 1990
++ Description:
++ This is the top level package for doing multivariate factorization
++ over basic domains like \spadtype{Integer} or \spadtype{Fraction Integer}.

MultivariateFactorize(OV,E,R,P) : SIG == CODE where
  R : Join(EuclideanDomain, CharacteristicZero) -- with factor on R[x]
  OV : OrderedSet
  E : OrderedAbelianMonoidSup
  P : PolynomialCategory(R,E,OV)

  Z            ==> Integer
  MParFact     ==> Record(irr:P,pow:Z)
  USP          ==> SparseUnivariatePolynomial P
  SUParFact    ==> Record(irr:USP,pow:Z)
  SUPFinalFact ==> Record(contp:R,factors:List SUParFact)
  MFinalFact   ==> Record(contp:R,factors:List MParFact)
                 --  contp   =  content,
                 --  factors =  List of irreducible factors with exponent
  L ==> List

  SIG ==> with

    factor : P -> Factored P
      ++ factor(p) factors the multivariate polynomial p over its coefficient
      ++ domain

    factor : USP -> Factored USP
      ++ factor(p) factors the multivariate polynomial p over its coefficient
      ++ domain where p is represented as a univariate polynomial with
      ++ multivariate coefficients

  CODE ==> add

    factor(p:P) : Factored P ==
      R is Fraction Integer =>
         factor(p)$MRationalFactorize(E,OV,Integer,P)
      R is Fraction Complex Integer =>
         factor(p)$MRationalFactorize(E,OV,Complex Integer,P)
      R is Fraction Polynomial Integer and OV has convert: % -> Symbol =>
         factor(p)$MPolyCatRationalFunctionFactorizer(E,OV,Integer,P)
      factor(p,factor$GenUFactorize(R))$InnerMultFact(OV,E,R,P)

    factor(up:USP) : Factored USP ==
      factor(up,factor$GenUFactorize(R))$InnerMultFact(OV,E,R,P)