This file is indexed.

/usr/share/axiom-20170501/src/algebra/MULTSQFR.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
)abbrev package MULTSQFR MultivariateSquareFree
++ Author : P.Gianni
++ Description:
++ This package provides the functions for the computation of the square
++ free decomposition of a multivariate polynomial.
++ It uses the package GenExEuclid for the resolution of
++ the equation \spad{Af + Bg = h} and its generalization to n polynomials
++ over an integral domain and the package \spad{MultivariateLifting}
++ for the "multivariate" lifting.
 
MultivariateSquareFree(E,OV,R,P) : SIG == CODE where
  R   : EuclideanDomain
  OV  : OrderedSet
  E   : OrderedAbelianMonoidSup
  P   : PolynomialCategory(R,E,OV)

  Z          ==> Integer
  NNI        ==> NonNegativeInteger
  SUP        ==> SparseUnivariatePolynomial P
  BP         ==> SparseUnivariatePolynomial(R)
  fUnion     ==> Union("nil","sqfr","irred","prime")
  ffSUP      ==> Record(flg:fUnion,fctr:SUP,xpnt:Integer)
  ffP        ==> Record(flg:fUnion,fctr:P,xpnt:Integer)
  FFE        ==> Record(factor:BP,exponent:Z)
  FFEP       ==> Record(factor:P,exponent:Z)
  FFES       ==> Record(factor:SUP,exponent:Z)
  Choice     ==> Record(upol:BP,Lval:List(R),Lfact:List FFE,ctpol:R)
  squareForm ==> Record(unitPart:P,suPart:List FFES)
  Twopol     ==> Record(pol:SUP,polval:BP)
  UPCF2      ==> UnivariatePolynomialCategoryFunctions2
 
  SIG ==> with

   squareFree : P -> Factored P
     ++ squareFree(p) computes the square free 
     ++ decomposition of a multivariate polynomial p.

   squareFree : SUP -> Factored SUP
     ++ squareFree(p) computes the square free 
     ++ decomposition of a multivariate polynomial p presented as
     ++ a univariate polynomial with multivariate coefficients.

   squareFreePrim : P -> Factored P
     ++ squareFreePrim(p) compute the square free decomposition 
     ++ of a primitive multivariate polynomial p.
 
                    ----  local functions  ----

   compdegd : List FFE -> Z
     ++ compdegd should be local

   univcase : (P,OV) -> Factored(P)
     ++ univcase should be local

   consnewpol : (SUP,BP,Z) -> Twopol
     ++ consnewpol should be local

   nsqfree : (SUP,List(OV), List List R) -> squareForm
     ++ nsqfree should be local

   intChoose : (SUP,List(OV),List List R) -> Choice
     ++ intChoose should be local

   coefChoose : (Z,Factored P) -> P
     ++ coefChoose should be local

   check : (List(FFE),List(FFE)) -> Boolean
     ++ check should be local

   lift : (SUP,BP,BP,P,List(OV),List(NNI),List(R)) -> Union(List(SUP),"failed")
     ++ lift should be local

   myDegree : (SUP,List OV,NNI) -> List NNI
     ++ myDegree should be local

   normDeriv2 : (BP,Z) ->  BP
     ++ normDeriv2 should be local
 
  CODE ==> add
 
   pmod:R   :=  (prevPrime(2**26)$IntegerPrimesPackage(Integer))::R
 
   import GenExEuclid()
   import MultivariateLifting(E,OV,R,P)
   import PolynomialGcdPackage(E,OV,R,P)
   import FactoringUtilities(E,OV,R,P)
   import IntegerCombinatoricFunctions(Z)
 
 
    ----  Are the univariate square-free decompositions consistent?  ----
 
     ----  new square-free algorithm for primitive polynomial  ----
   nsqfree(oldf:SUP,lvar:List(OV),ltry:List List R) : squareForm ==
     f:=oldf
     univPol := intChoose(f,lvar,ltry)
     f0:=univPol.upol
     --the polynomial is square-free
     f0=1$BP => [1$P,[[f,1]$FFES]]$squareForm
     lfact:List(FFE):=univPol.Lfact
     lval:=univPol.Lval
     ctf:=univPol.ctpol
     leadpol:Boolean:=false
     sqdec:List FFES := empty()
     exp0:Z:=0
     unitsq:P:=1
     lcf:P:=leadingCoefficient f
     if ctf^=1 then
       f0:=ctf*f0
       f:=(ctf::P)*f
       lcf:=ctf*lcf
     sqlead:List FFEP:= empty()
     sqlc:Factored P:=1
     if lcf^=1$P then
       leadpol:=true
       sqlc:=squareFree lcf
       unitsq:=unitsq*(unit sqlc)
       sqlead:= factors sqlc
     lfact:=sort((z1:FFE,z2:FFE):Boolean +-> z1.exponent > z2.exponent,lfact)
     while lfact^=[] repeat
       pfact:=lfact.first
       (g0,exp0):=(pfact.factor,pfact.exponent)
       lfact:=lfact.rest
       lfact=[] and exp0 =1 =>
         f := (f exquo (ctf::P))::SUP
         gg := unitNormal leadingCoefficient f
         sqdec:=cons([gg.associate*f,exp0],sqdec)
         return  [gg.unit, sqdec]$squareForm
       if ctf^=1 then g0:=ctf*g0
       npol:=consnewpol(f,f0,exp0)
       (d,d0):=(npol.pol,npol.polval)
       if leadpol then lcoef:=coefChoose(exp0,sqlc)
       else lcoef:=1$P
       ldeg:=myDegree(f,lvar,exp0::NNI)
       result:=lift(d,g0,(d0 exquo g0)::BP,lcoef,lvar,ldeg,lval)
       result case "failed" => return nsqfree(oldf,lvar,ltry)
       result0:SUP:= (result::List SUP).1
       r1:SUP:=result0**(exp0:NNI)
       if (h:=f exquo r1) case "failed" then return nsqfree(oldf,lvar,empty())
       sqdec:=cons([result0,exp0],sqdec)
       f:=h::SUP
       f0:=completeEval(h,lvar,lval)
       lcr:P:=leadingCoefficient result0
       if leadpol and lcr^=1$P then
         for lpfact in sqlead  while lcr^=1 repeat
           ground? lcr =>
             unitsq:=(unitsq exquo lcr)::P
             lcr:=1$P
           (h1:=lcr exquo lpfact.factor) case "failed" => "next"
           lcr:=h1::P
           lpfact.exponent:=(lpfact.exponent)-exp0
     [((retract f) exquo ctf)::P,sqdec]$squareForm
 
   squareFree(f:SUP) : Factored SUP ==
     degree f =0 =>
       fu:=squareFree retract f
       makeFR((unit fu)::SUP,[["sqfr",ff.fctr::SUP,ff.xpnt]
               for ff in factorList fu])
     lvar:= "setUnion"/[variables cf for cf in coefficients f]
     empty? lvar =>  -- the polynomial is univariate
       upol:=map(ground,f)$UPCF2(P,SUP,R,BP)
       usqfr:=squareFree upol
       makeFR(map(coerce,unit usqfr)$UPCF2(R,BP,P,SUP),
              [["sqfr",map(coerce,ff.fctr)$UPCF2(R,BP,P,SUP),ff.xpnt]
                 for ff in factorList usqfr])
     lcf:=content f
     f:=(f exquo lcf) ::SUP
     lcSq:=squareFree lcf
     lfs:List ffSUP:=[["sqfr",ff.fctr ::SUP,ff.xpnt]
                        for ff in factorList lcSq]
     partSq:=nsqfree(f,lvar,empty())
     lfs:=append([["sqfr",fu.factor,fu.exponent]$ffSUP
                    for fu in partSq.suPart],lfs)
     makeFR((unit lcSq * partSq.unitPart) ::SUP,lfs)

   squareFree(f:P) : Factored P ==
     ground? f => makeFR(f,[])      ---   the polynomial is constant  ---
     lvar:List(OV):=variables(f)
     result1:List ffP:= empty()
     lmdeg :=minimumDegree(f,lvar)     ---       is the mindeg > 0 ? ---
     p:P:=1$P
     for im in 1..#lvar repeat
       (n:=lmdeg.im)=0 => "next im"
       y:=lvar.im
       p:=p*monomial(1$P,y,n)
       result1:=cons(["sqfr",y::P,n],result1)
     if p^=1$P then
       f := (f exquo p)::P
       if ground? f then return makeFR(f, result1)
       lvar:=variables(f)
     #lvar=1 =>                    ---  the polynomial is univariate ---
       result:=univcase(f,lvar.first)
       makeFR(unit result,append(result1,factorList result))
     ldeg:=degree(f,lvar)          ---  general case ---
     m:="min"/[j for j in ldeg|j^=0]
     i:Z:=1
     for j in ldeg while j>m repeat i:=i+1
     x:=lvar.i
     lvar:=delete(lvar,i)
     f0:=univariate (f,x)
     lcont:P:= content f0
     nsqfftot:=nsqfree((f0 exquo lcont)::SUP,lvar,empty())
     nsqff:List ffP:=[["sqfr",multivariate(fu.factor,x),fu.exponent]$ffP
                          for fu in nsqfftot.suPart]
     result1:=append(result1,nsqff)
     ground? lcont => makeFR(lcont*nsqfftot.unitPart,result1)
     sqlead:=squareFree(lcont)
     makeFR(unit sqlead*nsqfftot.unitPart,append(result1,factorList sqlead))
 
    -- Choose the integer for the evaluation.                        --
    -- If the polynomial is square-free the function returns upol=1. --
 
   intChoose(f:SUP,lvar:List(OV),ltry:List List R):Choice ==
     degf:= degree f
     try:NNI:=0
     nvr:=#lvar
     range:Z:=10
     lfact1:List(FFE):=[]
     lval1:List R := []
     lfact:List(FFE)
     ctf1:R:=1
     f1:BP:=1$BP
     d1:Z
     while range<10000000000 repeat
       range:=2*range
       lval:= [ran(range) for i in 1..nvr]
       member?(lval,ltry) => "new integer"
       ltry:=cons(lval,ltry)
       f0:=completeEval(f,lvar,lval)
       degree f0 ^=degf  => "new integer"
       ctf:=content f0
       lfact:List(FFE):=factors(squareFree((f0 exquo (ctf:R)::BP)::BP))
 
            ----  the univariate polynomial is square-free  ----
       if #lfact=1 and (lfact.1).exponent=1 then
         return [1$BP,lval,lfact,1$R]$Choice
 
       d0:=compdegd lfact
                 ----      inizialize lfact1      ----
       try=0 =>
         f1:=f0
         lfact1:=lfact
         ctf1:=ctf
         lval1:=lval
         d1:=d0
         try:=1
       d0=d1 =>
         return [f1,lval1,lfact1,ctf1]$Choice
       d0 < d1 =>
         try:=1
         f1:=f0
         lfact1:=lfact
         ctf1:=ctf
         lval1:=lval
         d1:=d0
 
        ----  Choose the leading coefficient for the lifting  ----
   coefChoose(exp:Z,sqlead:Factored(P)) : P ==
     lcoef:P:=unit(sqlead)
     for term in factors(sqlead) repeat
       texp:=term.exponent
       texp<exp => "next term"
       texp=exp => lcoef:=lcoef*term.factor
       lcoef:=lcoef*(term.factor)**((texp quo exp)::NNI)
     lcoef
 
        ----  Construction of the polynomials for the lifting  ----
   consnewpol(g:SUP,g0:BP,deg:Z):Twopol ==
     deg=1 => [g,g0]$Twopol
     deg:=deg-1
     [normalDeriv(g,deg),normDeriv2(g0,deg)]$Twopol
 
         ----  lift the univariate square-free factor  ----
   lift(ud:SUP,g0:BP,g1:BP,lcoef:P,lvar:List(OV),
                    ldeg:List(NNI),lval:List(R)) : Union(List SUP,"failed") ==
     leadpol:Boolean:=false
     lcd:P:=leadingCoefficient ud
     leadlist:List(P):=empty()
 
     if ^ground?(leadingCoefficient ud) then
       leadpol:=true
       ud:=lcoef*ud
       lcg0:R:=leadingCoefficient g0
       if ground? lcoef then g0:=retract(lcoef) quo lcg0 *g0
       else g0:=(retract(eval(lcoef,lvar,lval)) quo lcg0) * g0
       g1:=lcg0*g1
       leadlist:=[lcoef,lcd]
     plist:=lifting(ud,lvar,[g0,g1],lval,leadlist,ldeg,pmod)
     plist case "failed" => "failed" 
     (p0:SUP,p1:SUP):=((plist::List SUP).1,(plist::List SUP).2)
     if completeEval(p0,lvar,lval) ^= g0 then (p0,p1):=(p1,p0)
     [primitivePart p0,primitivePart p1]

                ----  the polynomial is univariate  ----
   univcase(f:P,x:OV) : Factored(P) ==
     uf := univariate f
     cf:=content uf
     uf :=(uf exquo cf)::BP
     result:Factored BP:=squareFree uf
     makeFR(multivariate(cf*unit result,x),
         [["sqfr",multivariate(term.factor,x),term.exponent]
           for term in factors result])

   compdegd(lfact:List(FFE)) : Z ==
     ris:Z:=0
     for pfact in lfact repeat
       ris:=ris+(pfact.exponent -1)*degree pfact.factor
     ris
 
   normDeriv2(f:BP,m:Z) : BP ==
     (n1:Z:=degree f) < m => 0$BP
     n1=m => (leadingCoefficient f)::BP
     k:=binomial(n1,m)
     ris:BP:=0$BP
     n:Z:=n1
     while n>= m repeat
       while n1>n repeat
         k:=(k*(n1-m)) quo n1
         n1:=n1-1
       ris:=ris+monomial(k*leadingCoefficient f,(n-m)::NNI)
       f:=reductum f
       n:=degree f
     ris

   myDegree(f:SUP,lvar:List OV,exp:NNI) : List NNI==
     [n quo exp for n in degree(f,lvar)]