This file is indexed.

/usr/share/axiom-20170501/src/algebra/MYUP.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
)abbrev domain MYUP MyUnivariatePolynomial
++ Author: Mark Botch
++ Description:
++ This domain has no description

MyUnivariatePolynomial(x,R) : SIG == CODE where
  x : Symbol
  R : Ring

  SIG ==> UnivariatePolynomialCategory(R) with

    RetractableTo Symbol;

    coerce : Variable(x) -> %
      ++ coerce(x) converts the variable x to a univariate polynomial.

    fmecg : (%,NonNegativeInteger,R,%) -> %
        ++ fmecg(p1,e,r,p2) finds x : p1 - r * x**e * p2

    if R has univariate: (R, Symbol) -> SparseUnivariatePolynomial R
    then

      coerce : R -> %

    coerce : Polynomial R -> %

  CODE ==> SparseUnivariatePolynomial(R) add

    Rep := SparseUnivariatePolynomial(R)

    coerce(p: %):OutputForm  == outputForm(p, outputForm x)

    coerce(x: Symbol): % == monomial(1, 1)

    coerce(v: Variable(x)):% == monomial(1, 1)

    retract(p: %): Symbol == 
        retract(p)@SingletonAsOrderedSet
        x

    if R has univariate: (R, Symbol) -> SparseUnivariatePolynomial R then

      coerce(p: R): % == univariate(p, x)$R

    coerce(p: Polynomial R): % == 
        poly: SparseUnivariatePolynomial(Polynomial R) 
             := univariate(p, x)$(Polynomial R)
        map((z1:Polynomial R):R +-> retract(z1), poly)_
             $UnivariatePolynomialCategoryFunctions2(Polynomial R,
                    SparseUnivariatePolynomial Polynomial R, R, %)