/usr/share/axiom-20170501/src/algebra/NAGC06.spad is in axiom-source 20170501-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 | )abbrev package NAGC06 NagSeriesSummationPackage
++ Author: Godfrey Nolan and Mike Dewar
++ Date Created: Jan 1994
++ Date Last Updated: Thu May 12 17:44:30 1994
++ Description:
++ This package uses the NAG Library to calculate the discrete Fourier
++ transform of a sequence of real or complex data values, and
++ applies it to calculate convolutions and correlations.
NagSeriesSummationPackage() : SIG == CODE where
S ==> Symbol
FOP ==> FortranOutputStackPackage
SIG ==> with
c06eaf : (Integer,Matrix DoubleFloat,Integer) -> Result
++ c06eaf(n,x,ifail)
++ calculates the discrete Fourier transform of a sequence of
++ n real data values. (No extra workspace required.)
++ See \downlink{Manual Page}{manpageXXc06eaf}.
c06ebf : (Integer,Matrix DoubleFloat,Integer) -> Result
++ c06ebf(n,x,ifail)
++ calculates the discrete Fourier transform of a Hermitian
++ sequence of n complex data values. (No extra workspace required.)
++ See \downlink{Manual Page}{manpageXXc06ebf}.
c06ecf : (Integer,Matrix DoubleFloat,Matrix DoubleFloat,Integer) -> Result
++ c06ecf(n,x,y,ifail)
++ calculates the discrete Fourier transform of a sequence of
++ n complex data values. (No extra workspace required.)
++ See \downlink{Manual Page}{manpageXXc06ecf}.
c06ekf : (Integer,Integer,Matrix DoubleFloat,Matrix DoubleFloat,_
Integer) -> Result
++ c06ekf(job,n,x,y,ifail)
++ calculates the circular convolution of two
++ real vectors of period n. No extra workspace is required.
++ See \downlink{Manual Page}{manpageXXc06ekf}.
c06fpf : (Integer,Integer,String,Matrix DoubleFloat,_
Matrix DoubleFloat,Integer) -> Result
++ c06fpf(m,n,init,x,trig,ifail)
++ computes the discrete Fourier transforms of m sequences,
++ each containing n real data values. This routine is designed to
++ be particularly efficient on vector processors.
++ See \downlink{Manual Page}{manpageXXc06fpf}.
c06fqf : (Integer,Integer,String,Matrix DoubleFloat,_
Matrix DoubleFloat,Integer) -> Result
++ c06fqf(m,n,init,x,trig,ifail)
++ computes the discrete Fourier transforms of m Hermitian
++ sequences, each containing n complex data values. This routine is
++ designed to be particularly efficient on vector processors.
++ See \downlink{Manual Page}{manpageXXc06fqf}.
c06frf : (Integer,Integer,String,Matrix DoubleFloat,_
Matrix DoubleFloat,Matrix DoubleFloat,Integer) -> Result
++ c06frf(m,n,init,x,y,trig,ifail)
++ computes the discrete Fourier transforms of m sequences,
++ each containing n complex data values. This routine is designed
++ to be particularly efficient on vector processors.
++ See \downlink{Manual Page}{manpageXXc06frf}.
c06fuf : (Integer,Integer,String,Matrix DoubleFloat,_
Matrix DoubleFloat,Matrix DoubleFloat,Matrix DoubleFloat,_
Integer) -> Result
++ c06fuf(m,n,init,x,y,trigm,trign,ifail)
++ computes the two-dimensional discrete Fourier transform of
++ a bivariate sequence of complex data values. This routine is
++ designed to be particularly efficient on vector processors.
++ See \downlink{Manual Page}{manpageXXc06fuf}.
c06gbf : (Integer,Matrix DoubleFloat,Integer) -> Result
++ c06gbf(n,x,ifail)
++ forms the complex conjugate of n
++ data values.
++ See \downlink{Manual Page}{manpageXXc06gbf}.
c06gcf : (Integer,Matrix DoubleFloat,Integer) -> Result
++ c06gcf(n,y,ifail)
++ forms the complex conjugate of a sequence of n data
++ values.
++ See \downlink{Manual Page}{manpageXXc06gcf}.
c06gqf : (Integer,Integer,Matrix DoubleFloat,Integer) -> Result
++ c06gqf(m,n,x,ifail)
++ forms the complex conjugates,
++ each containing n data values.
++ See \downlink{Manual Page}{manpageXXc06gqf}.
c06gsf : (Integer,Integer,Matrix DoubleFloat,Integer) -> Result
++ c06gsf(m,n,x,ifail)
++ takes m Hermitian sequences, each containing n data
++ values, and forms the real and imaginary parts of the m
++ corresponding complex sequences.
++ See \downlink{Manual Page}{manpageXXc06gsf}.
CODE ==> add
import Lisp
import DoubleFloat
import Any
import Record
import Integer
import Matrix DoubleFloat
import Boolean
import NAGLinkSupportPackage
import AnyFunctions1(Integer)
import AnyFunctions1(String)
import AnyFunctions1(Matrix DoubleFloat)
c06eaf(nArg:Integer,xArg:Matrix DoubleFloat,ifailArg:Integer): Result ==
[(invokeNagman(NIL$Lisp,_
"c06eaf",_
["n"::S,"ifail"::S,"x"::S]$Lisp,_
[]$Lisp,_
[["double"::S,["x"::S,"n"::S]$Lisp]$Lisp_
,["integer"::S,"n"::S,"ifail"::S]$Lisp_
]$Lisp,_
["x"::S,"ifail"::S]$Lisp,_
[([nArg::Any,ifailArg::Any,xArg::Any ])_
@List Any]$Lisp)$Lisp)_
pretend List (Record(key:Symbol,entry:Any))]$Result
c06ebf(nArg:Integer,xArg:Matrix DoubleFloat,ifailArg:Integer): Result ==
[(invokeNagman(NIL$Lisp,_
"c06ebf",_
["n"::S,"ifail"::S,"x"::S]$Lisp,_
[]$Lisp,_
[["double"::S,["x"::S,"n"::S]$Lisp]$Lisp_
,["integer"::S,"n"::S,"ifail"::S]$Lisp_
]$Lisp,_
["x"::S,"ifail"::S]$Lisp,_
[([nArg::Any,ifailArg::Any,xArg::Any ])_
@List Any]$Lisp)$Lisp)_
pretend List (Record(key:Symbol,entry:Any))]$Result
c06ecf(nArg:Integer,xArg:Matrix DoubleFloat,yArg:Matrix DoubleFloat,_
ifailArg:Integer): Result ==
[(invokeNagman(NIL$Lisp,_
"c06ecf",_
["n"::S,"ifail"::S,"x"::S,"y"::S]$Lisp,_
[]$Lisp,_
[["double"::S,["x"::S,"n"::S]$Lisp,["y"::S,"n"::S]$Lisp_
]$Lisp_
,["integer"::S,"n"::S,"ifail"::S]$Lisp_
]$Lisp,_
["x"::S,"y"::S,"ifail"::S]$Lisp,_
[([nArg::Any,ifailArg::Any,xArg::Any,yArg::Any ])_
@List Any]$Lisp)$Lisp)_
pretend List (Record(key:Symbol,entry:Any))]$Result
c06ekf(jobArg:Integer,nArg:Integer,xArg:Matrix DoubleFloat,_
yArg:Matrix DoubleFloat,ifailArg:Integer): Result ==
[(invokeNagman(NIL$Lisp,_
"c06ekf",_
["job"::S,"n"::S,"ifail"::S,"x"::S,"y"::S]$Lisp,_
[]$Lisp,_
[["double"::S,["x"::S,"n"::S]$Lisp,["y"::S,"n"::S]$Lisp_
]$Lisp_
,["integer"::S,"job"::S,"n"::S,"ifail"::S]$Lisp_
]$Lisp,_
["x"::S,"y"::S,"ifail"::S]$Lisp,_
[([jobArg::Any,nArg::Any,ifailArg::Any,xArg::Any,yArg::Any ])_
@List Any]$Lisp)$Lisp)_
pretend List (Record(key:Symbol,entry:Any))]$Result
c06fpf(mArg:Integer,nArg:Integer,initArg:String,_
xArg:Matrix DoubleFloat,trigArg:Matrix DoubleFloat,_
ifailArg:Integer): Result ==
[(invokeNagman(NIL$Lisp,_
"c06fpf",_
["m"::S,"n"::S,"init"::S,"ifail"::S,"x"::S,"trig"::S,"work"::S]$Lisp,_
["work"::S]$Lisp,_
[["double"::S,["x"::S,["*"::S,"m"::S,"n"::S]$Lisp]$Lisp_
,["trig"::S,["*"::S,2$Lisp,"n"::S]$Lisp]$Lisp,_
["work"::S,["*"::S,"m"::S,"n"::S]$Lisp]$Lisp]$Lisp_
,["integer"::S,"m"::S,"n"::S,"ifail"::S]$Lisp_
,["character"::S,"init"::S]$Lisp_
]$Lisp,_
["x"::S,"trig"::S,"ifail"::S]$Lisp,_
[([mArg::Any,nArg::Any,initArg::Any,ifailArg::Any,_
xArg::Any,trigArg::Any ])_
@List Any]$Lisp)$Lisp)_
pretend List (Record(key:Symbol,entry:Any))]$Result
c06fqf(mArg:Integer,nArg:Integer,initArg:String,_
xArg:Matrix DoubleFloat,trigArg:Matrix DoubleFloat,_
ifailArg:Integer): Result ==
[(invokeNagman(NIL$Lisp,_
"c06fqf",_
["m"::S,"n"::S,"init"::S,"ifail"::S,"x"::S,"trig"::S,"work"::S]$Lisp,_
["work"::S]$Lisp,_
[["double"::S,["x"::S,["*"::S,"m"::S,"n"::S]$Lisp]$Lisp_
,["trig"::S,["*"::S,2$Lisp,"n"::S]$Lisp]$Lisp,_
["work"::S,["*"::S,"m"::S,"n"::S]$Lisp]$Lisp]$Lisp_
,["integer"::S,"m"::S,"n"::S,"ifail"::S]$Lisp_
,["character"::S,"init"::S]$Lisp_
]$Lisp,_
["x"::S,"trig"::S,"ifail"::S]$Lisp,_
[([mArg::Any,nArg::Any,initArg::Any,ifailArg::Any,xArg::Any,_
trigArg::Any ])_
@List Any]$Lisp)$Lisp)_
pretend List (Record(key:Symbol,entry:Any))]$Result
c06frf(mArg:Integer,nArg:Integer,initArg:String,_
xArg:Matrix DoubleFloat,yArg:Matrix DoubleFloat,_
trigArg:Matrix DoubleFloat,_
ifailArg:Integer): Result ==
[(invokeNagman(NIL$Lisp,_
"c06frf",_
["m"::S,"n"::S,"init"::S,"ifail"::S,"x"::S,"y"::S,"trig"::S,_
"work"::S]$Lisp,_
["work"::S]$Lisp,_
[["double"::S,["x"::S,["*"::S,"m"::S,"n"::S]$Lisp]$Lisp_
,["y"::S,["*"::S,"m"::S,"n"::S]$Lisp]$Lisp,["trig"::S,_
["*"::S,2$Lisp,"n"::S]$Lisp]$Lisp,["work"::S,_
["*"::S,["*"::S,2$Lisp,"m"::S]$Lisp,"n"::S]$Lisp]$Lisp]$Lisp_
,["integer"::S,"m"::S,"n"::S,"ifail"::S]$Lisp_
,["character"::S,"init"::S]$Lisp]$Lisp,_
["x"::S,"y"::S,"trig"::S,"ifail"::S]$Lisp,_
[([mArg::Any,nArg::Any,initArg::Any,ifailArg::Any,_
xArg::Any,yArg::Any,trigArg::Any ])_
@List Any]$Lisp)$Lisp)_
pretend List (Record(key:Symbol,entry:Any))]$Result
c06fuf(mArg:Integer,nArg:Integer,initArg:String,_
xArg:Matrix DoubleFloat,yArg:Matrix DoubleFloat,_
trigmArg:Matrix DoubleFloat,_
trignArg:Matrix DoubleFloat,ifailArg:Integer): Result ==
[(invokeNagman(NIL$Lisp,_
"c06fuf",_
["m"::S,"n"::S,"init"::S,"ifail"::S,"x"::S,"y"::S,"trigm"::S,_
"trign"::S,"work"::S]$Lisp,_
["work"::S]$Lisp,_
[["double"::S,["x"::S,["*"::S,"m"::S,"n"::S]$Lisp]$Lisp_
,["y"::S,["*"::S,"m"::S,"n"::S]$Lisp]$Lisp,["trigm"::S,_
["*"::S,2$Lisp,"m"::S]$Lisp]$Lisp,["trign"::S,_
["*"::S,2$Lisp,"n"::S]$Lisp]$Lisp_
,["work"::S,["*"::S,["*"::S,2$Lisp,"m"::S]$Lisp,_
"n"::S]$Lisp]$Lisp]$Lisp_
,["integer"::S,"m"::S,"n"::S,"ifail"::S]$Lisp_
,["character"::S,"init"::S]$Lisp_
]$Lisp,_
["x"::S,"y"::S,"trigm"::S,"trign"::S,"ifail"::S]$Lisp,_
[([mArg::Any,nArg::Any,initArg::Any,ifailArg::Any,xArg::Any,_
yArg::Any,trigmArg::Any,trignArg::Any ])_
@List Any]$Lisp)$Lisp)_
pretend List (Record(key:Symbol,entry:Any))]$Result
c06gbf(nArg:Integer,xArg:Matrix DoubleFloat,ifailArg:Integer): Result ==
[(invokeNagman(NIL$Lisp,_
"c06gbf",_
["n"::S,"ifail"::S,"x"::S]$Lisp,_
[]$Lisp,_
[["double"::S,["x"::S,"n"::S]$Lisp]$Lisp_
,["integer"::S,"n"::S,"ifail"::S]$Lisp_
]$Lisp,_
["x"::S,"ifail"::S]$Lisp,_
[([nArg::Any,ifailArg::Any,xArg::Any ])_
@List Any]$Lisp)$Lisp)_
pretend List (Record(key:Symbol,entry:Any))]$Result
c06gcf(nArg:Integer,yArg:Matrix DoubleFloat,ifailArg:Integer): Result ==
[(invokeNagman(NIL$Lisp,_
"c06gcf",_
["n"::S,"ifail"::S,"y"::S]$Lisp,_
[]$Lisp,_
[["double"::S,["y"::S,"n"::S]$Lisp]$Lisp_
,["integer"::S,"n"::S,"ifail"::S]$Lisp_
]$Lisp,_
["y"::S,"ifail"::S]$Lisp,_
[([nArg::Any,ifailArg::Any,yArg::Any ])_
@List Any]$Lisp)$Lisp)_
pretend List (Record(key:Symbol,entry:Any))]$Result
c06gqf(mArg:Integer,nArg:Integer,xArg:Matrix DoubleFloat,_
ifailArg:Integer): Result ==
[(invokeNagman(NIL$Lisp,_
"c06gqf",_
["m"::S,"n"::S,"ifail"::S,"x"::S]$Lisp,_
[]$Lisp,_
[["double"::S,["x"::S,["*"::S,"m"::S,"n"::S]$Lisp]$Lisp_
]$Lisp_
,["integer"::S,"m"::S,"n"::S,"ifail"::S]$Lisp_
]$Lisp,_
["x"::S,"ifail"::S]$Lisp,_
[([mArg::Any,nArg::Any,ifailArg::Any,xArg::Any ])_
@List Any]$Lisp)$Lisp)_
pretend List (Record(key:Symbol,entry:Any))]$Result
c06gsf(mArg:Integer,nArg:Integer,xArg:Matrix DoubleFloat,_
ifailArg:Integer): Result ==
[(invokeNagman(NIL$Lisp,_
"c06gsf",_
["m"::S,"n"::S,"ifail"::S,"x"::S,"u"::S,"v"::S]$Lisp,_
["u"::S,"v"::S]$Lisp,_
[["double"::S,["x"::S,["*"::S,"m"::S,"n"::S]$Lisp]$Lisp_
,["u"::S,["*"::S,"m"::S,"n"::S]$Lisp]$Lisp,_
["v"::S,["*"::S,"m"::S,"n"::S]$Lisp]$Lisp]$Lisp_
,["integer"::S,"m"::S,"n"::S,"ifail"::S]$Lisp_
]$Lisp,_
["u"::S,"v"::S,"ifail"::S]$Lisp,_
[([mArg::Any,nArg::Any,ifailArg::Any,xArg::Any ])_
@List Any]$Lisp)$Lisp)_
pretend List (Record(key:Symbol,entry:Any))]$Result
|