/usr/share/axiom-20170501/src/algebra/NAGF04.spad is in axiom-source 20170501-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 | )abbrev package NAGF04 NagLinearEquationSolvingPackage
++ Author: Godfrey Nolan and Mike Dewar
++ Date Created: Jan 1994
++ Date Last Updated: Thu May 12 17:45:31 1994
++ Description:
++ This package uses the NAG Library to solve the matrix equation \br
++ \tab{5}\axiom{AX=B}, where \axiom{B}\br
++ may be a single vector or a matrix of multiple right-hand sides.
++ The matrix \axiom{A} may be real, complex, symmetric, Hermitian positive-
++ definite, or sparse. It may also be rectangular, in which case a
++ least-squares solution is obtained.
NagLinearEquationSolvingPackage() : SIG == CODE where
S ==> Symbol
FOP ==> FortranOutputStackPackage
SIG ==> with
f04adf : (Integer,Matrix Complex DoubleFloat,Integer,Integer,_
Integer,Integer,Matrix Complex DoubleFloat,Integer) -> Result
++ f04adf(ia,b,ib,n,m,ic,a,ifail)
++ calculates the approximate solution of a set of complex
++ linear equations with multiple right-hand sides, using an LU
++ factorization with partial pivoting.
++ See \downlink{Manual Page}{manpageXXf04adf}.
f04arf : (Integer,Matrix DoubleFloat,Integer,Matrix DoubleFloat,_
Integer) -> Result
++ f04arf(ia,b,n,a,ifail)
++ calculates the approximate solution of a set of real
++ linear equations with a single right-hand side, using an LU
++ factorization with partial pivoting.
++ See \downlink{Manual Page}{manpageXXf04arf}.
f04asf : (Integer,Matrix DoubleFloat,Integer,Matrix DoubleFloat,_
Integer) -> Result
++ f04asf(ia,b,n,a,ifail)
++ calculates the accurate solution of a set of real
++ symmetric positive-definite linear equations with a single right-
++ hand side, Ax=b, using a Cholesky factorization and iterative
++ refinement.
++ See \downlink{Manual Page}{manpageXXf04asf}.
f04atf : (Matrix DoubleFloat,Integer,Matrix DoubleFloat,Integer,_
Integer,Integer) -> Result
++ f04atf(a,ia,b,n,iaa,ifail)
++ calculates the accurate solution of a set of real linear
++ equations with a single right-hand side, using an LU
++ factorization with partial pivoting, and iterative refinement.
++ See \downlink{Manual Page}{manpageXXf04atf}.
f04axf : (Integer,Matrix DoubleFloat,Integer,Matrix Integer,_
Matrix Integer,Integer,Matrix Integer,Matrix DoubleFloat) -> Result
++ f04axf(n,a,licn,icn,ikeep,mtype,idisp,rhs)
++ calculates the approximate solution of a set of real
++ sparse linear equations with a single right-hand side, Ax=b or
++ T
++ A x=b, where A has been factorized by F01BRF or F01BSF.
++ See \downlink{Manual Page}{manpageXXf04axf}.
f04faf : (Integer,Integer,Matrix DoubleFloat,Matrix DoubleFloat,_
Matrix DoubleFloat,Integer) -> Result
++ f04faf(job,n,d,e,b,ifail)
++ calculates the approximate solution of a set of real
++ symmetric positive-definite tridiagonal linear equations.
++ See \downlink{Manual Page}{manpageXXf04faf}.
f04jgf : (Integer,Integer,Integer,DoubleFloat,_
Integer,Matrix DoubleFloat,Matrix DoubleFloat,Integer) -> Result
++ f04jgf(m,n,nra,tol,lwork,a,b,ifail)
++ finds the solution of a linear least-squares problem, Ax=b
++ , where A is a real m by n (m>=n) matrix and b is an m element
++ vector. If the matrix of observations is not of full rank, then
++ the minimal least-squares solution is returned.
++ See \downlink{Manual Page}{manpageXXf04jgf}.
f04maf : (Integer,Integer,Matrix DoubleFloat,Integer,_
Matrix Integer,Integer,Matrix Integer,Matrix DoubleFloat,_
Matrix Integer,Matrix Integer,Matrix DoubleFloat,Matrix DoubleFloat,_
Matrix Integer,Integer) -> Result
++ f04maf(n,nz,avals,licn,irn,lirn,icn,wkeep,ikeep,
++ inform,b,acc,noits,ifail)
++ e a sparse symmetric positive-definite system of linear
++ equations, Ax=b, using a pre-conditioned conjugate gradient
++ method, where A has been factorized by F01MAF.
++ See \downlink{Manual Page}{manpageXXf04maf}.
f04mbf : (Integer,Matrix DoubleFloat,Boolean,DoubleFloat,_
Integer,Integer,Integer,Integer,DoubleFloat,Integer,_
Union(fn:FileName,fp:Asp28(APROD)),_
Union(fn:FileName,fp:Asp34(MSOLVE))) -> Result
++ f04mbf(n,b,precon,shift,itnlim,msglvl,lrwork,_
++ liwork,rtol,ifail,aprod,msolve)
++ solves a system of real sparse symmetric linear equations
++ using a Lanczos algorithm.
++ See \downlink{Manual Page}{manpageXXf04mbf}.
f04mcf : (Integer,Matrix DoubleFloat,Integer,Matrix DoubleFloat,_
Matrix Integer,Integer,Matrix DoubleFloat,Integer,Integer,_
Integer,Integer) -> Result
++ f04mcf(n,al,lal,d,nrow,ir,b,nrb,iselct,nrx,ifail)
++ computes the approximate solution of a system of real
++ linear equations with multiple right-hand sides, AX=B, where A
++ is a symmetric positive-definite variable-bandwidth matrix, which
++ has previously been factorized by F01MCF. Related systems may
++ also be solved.
++ See \downlink{Manual Page}{manpageXXf04mcf}.
f04qaf : (Integer,Integer,DoubleFloat,DoubleFloat,_
DoubleFloat,DoubleFloat,Integer,Integer,Integer,Integer,_
Matrix DoubleFloat,Integer,Union(fn:FileName,_
fp:Asp30(APROD))) -> Result
++ f04qaf(m,n,damp,atol,btol,conlim,itnlim,msglvl,
++ lrwork,liwork,b,ifail,aprod)
++ solves sparse unsymmetric equations, sparse linear least-
++ squares problems and sparse damped linear least-squares problems,
++ using a Lanczos algorithm.
++ See \downlink{Manual Page}{manpageXXf04qaf}.
CODE ==> add
import Lisp
import DoubleFloat
import Any
import Record
import Integer
import Matrix DoubleFloat
import Boolean
import NAGLinkSupportPackage
import FortranPackage
import AnyFunctions1(Integer)
import AnyFunctions1(DoubleFloat)
import AnyFunctions1(Boolean)
import AnyFunctions1(Matrix Complex DoubleFloat)
import AnyFunctions1(Matrix DoubleFloat)
import AnyFunctions1(Matrix Integer)
f04adf(iaArg:Integer,bArg:Matrix Complex DoubleFloat,ibArg:Integer,_
nArg:Integer,mArg:Integer,icArg:Integer,_
aArg:Matrix Complex DoubleFloat,ifailArg:Integer): Result ==
[(invokeNagman(NIL$Lisp,_
"f04adf",_
["ia"::S,"ib"::S,"n"::S,"m"::S,"ic"::S_
,"ifail"::S,"b"::S,"c"::S,"a"::S,"wkspce"::S]$Lisp,_
["c"::S,"wkspce"::S]$Lisp,_
[["double"::S,["wkspce"::S,"n"::S]$Lisp]$Lisp_
,["integer"::S,"ia"::S,"ib"::S,"n"::S,"m"::S_
,"ic"::S,"ifail"::S]$Lisp_
,["double complex"::S,["b"::S,"ib"::S,"m"::S]$Lisp,_
["c"::S,"ic"::S,"m"::S]$Lisp,["a"::S,"ia"::S,"n"::S]$Lisp]$Lisp_
]$Lisp,_
["c"::S,"a"::S,"ifail"::S]$Lisp,_
[([iaArg::Any,ibArg::Any,nArg::Any,mArg::Any,icArg::Any,_
ifailArg::Any,bArg::Any,aArg::Any ])_
@List Any]$Lisp)$Lisp)_
pretend List (Record(key:Symbol,entry:Any))]$Result
f04arf(iaArg:Integer,bArg:Matrix DoubleFloat,nArg:Integer,_
aArg:Matrix DoubleFloat,ifailArg:Integer): Result ==
[(invokeNagman(NIL$Lisp,_
"f04arf",_
["ia"::S,"n"::S,"ifail"::S,"b"::S,"c"::S,"a"::S,"wkspce"::S]$Lisp,_
["c"::S,"wkspce"::S]$Lisp,_
[["double"::S,["b"::S,"n"::S]$Lisp,["c"::S,"n"::S]$Lisp_
,["a"::S,"ia"::S,"n"::S]$Lisp,["wkspce"::S,"n"::S]$Lisp]$Lisp_
,["integer"::S,"ia"::S,"n"::S,"ifail"::S]$Lisp_
]$Lisp,_
["c"::S,"a"::S,"ifail"::S]$Lisp,_
[([iaArg::Any,nArg::Any,ifailArg::Any,bArg::Any,aArg::Any ])_
@List Any]$Lisp)$Lisp)_
pretend List (Record(key:Symbol,entry:Any))]$Result
f04asf(iaArg:Integer,bArg:Matrix DoubleFloat,nArg:Integer,_
aArg:Matrix DoubleFloat,ifailArg:Integer): Result ==
[(invokeNagman(NIL$Lisp,_
"f04asf",_
["ia"::S,"n"::S,"ifail"::S,"b"::S,"c"::S,"a"::S,"wk1"::S,"wk2"::S_
]$Lisp,_
["c"::S,"wk1"::S,"wk2"::S]$Lisp,_
[["double"::S,["b"::S,"n"::S]$Lisp,["c"::S,"n"::S]$Lisp,_
["a"::S,"ia"::S,"n"::S]$Lisp,["wk1"::S,"n"::S]$Lisp,_
["wk2"::S,"n"::S]$Lisp]$Lisp_
,["integer"::S,"ia"::S,"n"::S,"ifail"::S]$Lisp_
]$Lisp,_
["c"::S,"a"::S,"ifail"::S]$Lisp,_
[([iaArg::Any,nArg::Any,ifailArg::Any,bArg::Any,aArg::Any ])_
@List Any]$Lisp)$Lisp)_
pretend List (Record(key:Symbol,entry:Any))]$Result
f04atf(aArg:Matrix DoubleFloat,iaArg:Integer,bArg:Matrix DoubleFloat,_
nArg:Integer,iaaArg:Integer,ifailArg:Integer): Result ==
[(invokeNagman(NIL$Lisp,_
"f04atf",_
["ia"::S,"n"::S,"iaa"::S,"ifail"::S,"a"::S,"b"::S,"c"::S,_
"aa"::S,"wks1"::S,"wks2"::S]$Lisp,_
["c"::S,"aa"::S,"wks1"::S,"wks2"::S]$Lisp,_
[["double"::S,["a"::S,"ia"::S,"n"::S]$Lisp_
,["b"::S,"n"::S]$Lisp,["c"::S,"n"::S]$Lisp,_
["aa"::S,"iaa"::S,"n"::S]$Lisp,["wks1"::S,"n"::S]$Lisp,_
["wks2"::S,"n"::S]$Lisp]$Lisp_
,["integer"::S,"ia"::S,"n"::S,"iaa"::S,"ifail"::S]$Lisp]$Lisp,_
["c"::S,"aa"::S,"ifail"::S]$Lisp,_
[([iaArg::Any,nArg::Any,iaaArg::Any,ifailArg::Any,_
aArg::Any,bArg::Any])@List Any]$Lisp)$Lisp)_
pretend List (Record(key:Symbol,entry:Any))]$Result
f04axf(nArg:Integer,aArg:Matrix DoubleFloat,licnArg:Integer,_
icnArg:Matrix Integer,ikeepArg:Matrix Integer,mtypeArg:Integer,_
idispArg:Matrix Integer,rhsArg:Matrix DoubleFloat): Result ==
[(invokeNagman(NIL$Lisp,_
"f04axf",_
["n"::S,"licn"::S,"mtype"::S,"resid"::S,"a"::S,"icn"::S,_
"ikeep"::S,"idisp"::S,"rhs"::S,"w"::S]$Lisp,_
["resid"::S,"w"::S]$Lisp,_
[["double"::S,["a"::S,"licn"::S]$Lisp,"resid"::S_
,["rhs"::S,"n"::S]$Lisp,["w"::S,"n"::S]$Lisp]$Lisp_
,["integer"::S,"n"::S,"licn"::S,["icn"::S,"licn"::S]$Lisp_
,["ikeep"::S,["*"::S,"n"::S,5$Lisp]$Lisp]$Lisp,_
"mtype"::S,["idisp"::S,2$Lisp]$Lisp]$Lisp_
]$Lisp,_
["resid"::S,"rhs"::S]$Lisp,_
[([nArg::Any,licnArg::Any,mtypeArg::Any,aArg::Any,icnArg::Any,_
ikeepArg::Any,idispArg::Any,rhsArg::Any ])_
@List Any]$Lisp)$Lisp)_
pretend List (Record(key:Symbol,entry:Any))]$Result
f04faf(jobArg:Integer,nArg:Integer,dArg:Matrix DoubleFloat,_
eArg:Matrix DoubleFloat,bArg:Matrix DoubleFloat,_
ifailArg:Integer): Result ==
[(invokeNagman(NIL$Lisp,_
"f04faf",_
["job"::S,"n"::S,"ifail"::S,"d"::S,"e"::S,"b"::S]$Lisp,_
[]$Lisp,_
[["double"::S,["d"::S,"n"::S]$Lisp,["e"::S,"n"::S]$Lisp_
,["b"::S,"n"::S]$Lisp]$Lisp_
,["integer"::S,"job"::S,"n"::S,"ifail"::S]$Lisp_
]$Lisp,_
["d"::S,"e"::S,"b"::S,"ifail"::S]$Lisp,_
[([jobArg::Any,nArg::Any,ifailArg::Any,dArg::Any,eArg::Any,bArg::Any])_
@List Any]$Lisp)$Lisp)_
pretend List (Record(key:Symbol,entry:Any))]$Result
f04jgf(mArg:Integer,nArg:Integer,nraArg:Integer,_
tolArg:DoubleFloat,lworkArg:Integer,aArg:Matrix DoubleFloat,_
bArg:Matrix DoubleFloat,ifailArg:Integer): Result ==
[(invokeNagman(NIL$Lisp,_
"f04jgf",_
["m"::S,"n"::S,"nra"::S,"tol"::S,"lwork"::S_
,"svd"::S,"sigma"::S,"irank"::S,"ifail"::S,"work"::S,_
"a"::S,"b"::S]$Lisp,_
["svd"::S,"sigma"::S,"irank"::S,"work"::S]$Lisp,_
[["double"::S,"tol"::S,"sigma"::S,["work"::S,"lwork"::S]$Lisp_
,["a"::S,"nra"::S,"n"::S]$Lisp,["b"::S,"m"::S]$Lisp]$Lisp_
,["integer"::S,"m"::S,"n"::S,"nra"::S,"lwork"::S_
,"irank"::S,"ifail"::S]$Lisp_
,["logical"::S,"svd"::S]$Lisp_
]$Lisp,_
["svd"::S,"sigma"::S,"irank"::S,"work"::S,"a"::S,_
"b"::S,"ifail"::S]$Lisp,_
[([mArg::Any,nArg::Any,nraArg::Any,tolArg::Any,lworkArg::Any,_
ifailArg::Any,aArg::Any,bArg::Any ])_
@List Any]$Lisp)$Lisp)_
pretend List (Record(key:Symbol,entry:Any))]$Result
f04maf(nArg:Integer,nzArg:Integer,avalsArg:Matrix DoubleFloat,_
licnArg:Integer,irnArg:Matrix Integer,lirnArg:Integer,_
icnArg:Matrix Integer,wkeepArg:Matrix DoubleFloat,_
ikeepArg:Matrix Integer,_
informArg:Matrix Integer,bArg:Matrix DoubleFloat,_
accArg:Matrix DoubleFloat,_
noitsArg:Matrix Integer,ifailArg:Integer): Result ==
[(invokeNagman(NIL$Lisp,"f04maf",_
["n"::S,"nz"::S,"licn"::S,"lirn"::S,"ifail"::S_
,"avals"::S,"irn"::S,"icn"::S,"wkeep"::S,"ikeep"::S_
,"inform"::S,"work"::S,"b"::S,"acc"::S,"noits"::S]$Lisp,_
["work"::S]$Lisp,_
[["double"::S,["avals"::S,"licn"::S]$Lisp,_
["wkeep"::S,["*"::S,3$Lisp,"n"::S]$Lisp]$Lisp_
,["work"::S,["*"::S,3$Lisp,"n"::S]$Lisp]$Lisp,_
["b"::S,"n"::S]$Lisp,["acc"::S,2$Lisp]$Lisp_
]$Lisp_
,["integer"::S,"n"::S,"nz"::S,"licn"::S,["irn"::S,"lirn"::S]$Lisp_
,"lirn"::S,["icn"::S,"licn"::S]$Lisp,["ikeep"::S,_
["*"::S,2$Lisp,"n"::S]$Lisp]$Lisp,["inform"::S,4$Lisp]$Lisp_
,["noits"::S,2$Lisp]$Lisp,"ifail"::S]$Lisp]$Lisp,_
["work"::S,"b"::S,"acc"::S,"noits"::S,"ifail"::S]$Lisp,_
[([nArg::Any,nzArg::Any,licnArg::Any,lirnArg::Any,_
ifailArg::Any,avalsArg::Any,irnArg::Any,icnArg::Any,wkeepArg::Any,_
ikeepArg::Any,informArg::Any,bArg::Any,accArg::Any,noitsArg::Any ])_
@List Any]$Lisp)$Lisp)_
pretend List (Record(key:Symbol,entry:Any))]$Result
f04mbf(nArg:Integer,bArg:Matrix DoubleFloat,preconArg:Boolean,_
shiftArg:DoubleFloat,itnlimArg:Integer,msglvlArg:Integer,_
lrworkArg:Integer,liworkArg:Integer,rtolArg:DoubleFloat,_
ifailArg:Integer,aprodArg:Union(fn:FileName,fp:Asp28(APROD)),_
msolveArg:Union(fn:FileName,fp:Asp34(MSOLVE))): Result ==
-- if both asps are AXIOM generated we do not need lrwork liwork
-- and will set to 1.
-- else believe the user but check that they are >0.
if (aprodArg case fp) and (msolveArg case fp)
then
lrworkArg:=1
liworkArg:=1
else
lrworkArg:=max(1,lrworkArg)
liworkArg:=max(1,liworkArg)
pushFortranOutputStack(aprodFilename := aspFilename "aprod")$FOP
if aprodArg case fn
then outputAsFortran(aprodArg.fn)
else outputAsFortran(aprodArg.fp)
popFortranOutputStack()$FOP
pushFortranOutputStack(msolveFilename := aspFilename "msolve")$FOP
if msolveArg case fn
then outputAsFortran(msolveArg.fn)
else outputAsFortran(msolveArg.fp)
popFortranOutputStack()$FOP
[(invokeNagman([aprodFilename,msolveFilename]$Lisp,_
"f04mbf",_
["n"::S,"precon"::S,"shift"::S,"itnlim"::S,"msglvl"::S_
,"lrwork"::S,"liwork"::S,"itn"::S,"anorm"::S,"acond"::S_
,"rnorm"::S,"xnorm"::S,"inform"::S,"rtol"::S,"ifail"::S_
,"aprod"::S,"msolve"::S,"b"::S,"x"::S,"work"::S,"rwork"::S,"iwork"::S_
]$Lisp,["x"::S,"itn"::S,"anorm"::S,"acond"::S,"rnorm"::S,"xnorm"::S,_
"inform"::S,"work"::S,"rwork"::S,"iwork"::S,"aprod"::S,_
"msolve"::S]$Lisp,[["double"::S,["b"::S,"n"::S]$Lisp,"shift"::S_
,["x"::S,"n"::S]$Lisp,"anorm"::S,"acond"::S,"rnorm"::S,"xnorm"::S,_
"rtol"::S,["work"::S,"n"::S,5$Lisp]$Lisp,_
["rwork"::S,"lrwork"::S]$Lisp_
,"aprod"::S,"msolve"::S]$Lisp_
,["integer"::S,"n"::S,"itnlim"::S,"msglvl"::S_
,"lrwork"::S,"liwork"::S,"itn"::S,"inform"::S,"ifail"::S,_
["iwork"::S,"liwork"::S]$Lisp]$Lisp_
,["logical"::S,"precon"::S]$Lisp_
]$Lisp,_
["x"::S,"itn"::S,"anorm"::S,"acond"::S,"rnorm"::S,"xnorm"::S,_
"inform"::S,"rtol"::S,"ifail"::S]$Lisp,_
[([nArg::Any,preconArg::Any,shiftArg::Any,itnlimArg::Any,_
msglvlArg::Any,lrworkArg::Any,liworkArg::Any,rtolArg::Any,_
ifailArg::Any,bArg::Any ])_
@List Any]$Lisp)$Lisp)_
pretend List (Record(key:Symbol,entry:Any))]$Result
f04mcf(nArg:Integer,alArg:Matrix DoubleFloat,lalArg:Integer,_
dArg:Matrix DoubleFloat,nrowArg:Matrix Integer,irArg:Integer,_
bArg:Matrix DoubleFloat,nrbArg:Integer,iselctArg:Integer,_
nrxArg:Integer,ifailArg:Integer): Result ==
[(invokeNagman(NIL$Lisp,_
"f04mcf",_
["n"::S,"lal"::S,"ir"::S,"nrb"::S,"iselct"::S_
,"nrx"::S,"ifail"::S,"al"::S,"d"::S,"nrow"::S,"b"::S,"x"::S_
]$Lisp,_
["x"::S]$Lisp,_
[["double"::S,["al"::S,"lal"::S]$Lisp,["d"::S,"n"::S]$Lisp_
,["b"::S,"nrb"::S,"ir"::S]$Lisp,["x"::S,"nrx"::S,"ir"::S]$Lisp]$Lisp_
,["integer"::S,"n"::S,"lal"::S,["nrow"::S,"n"::S]$Lisp_
,"ir"::S,"nrb"::S,"iselct"::S,"nrx"::S,"ifail"::S]$Lisp_
]$Lisp,_
["x"::S,"ifail"::S]$Lisp,_
[([nArg::Any,lalArg::Any,irArg::Any,nrbArg::Any,iselctArg::Any,_
nrxArg::Any,ifailArg::Any,alArg::Any,dArg::Any,nrowArg::Any,_
bArg::Any ])@List Any]$Lisp)$Lisp)_
pretend List (Record(key:Symbol,entry:Any))]$Result
f04qaf(mArg:Integer,nArg:Integer,dampArg:DoubleFloat,_
atolArg:DoubleFloat,btolArg:DoubleFloat,conlimArg:DoubleFloat,_
itnlimArg:Integer,msglvlArg:Integer,lrworkArg:Integer,_
liworkArg:Integer,bArg:Matrix DoubleFloat,ifailArg:Integer,_
aprodArg:Union(fn:FileName,fp:Asp30(APROD))): Result ==
pushFortranOutputStack(aprodFilename := aspFilename "aprod")$FOP
if aprodArg case fn
then outputAsFortran(aprodArg.fn)
else outputAsFortran(aprodArg.fp)
popFortranOutputStack()$FOP
[(invokeNagman([aprodFilename]$Lisp,_
"f04qaf",_
["m"::S,"n"::S,"damp"::S,"atol"::S,"btol"::S_
,"conlim"::S,"itnlim"::S,"msglvl"::S,"lrwork"::S,"liwork"::S_
,"itn"::S,"anorm"::S,"acond"::S,"rnorm"::S,"arnorm"::S_
,"xnorm"::S,"inform"::S,"ifail"::S,"aprod"::S,"x"::S,"se"::S,_
"b"::S,"work"::S,"rwork"::S_
,"iwork"::S]$Lisp,_
["x"::S,"se"::S,"itn"::S,"anorm"::S,"acond"::S,"rnorm"::S,_
"arnorm"::S,"xnorm"::S,"inform"::S,"work"::S,"rwork"::S,_
"iwork"::S,"aprod"::S]$Lisp,_
[["double"::S,"damp"::S,"atol"::S,"btol"::S_
,"conlim"::S,["x"::S,"n"::S]$Lisp,["se"::S,"n"::S]$Lisp,_
"anorm"::S,"acond"::S,"rnorm"::S,"arnorm"::S,"xnorm"::S,_
["b"::S,"m"::S]$Lisp_
,["work"::S,"n"::S,2$Lisp]$Lisp,["rwork"::S,"lrwork"::S]$Lisp,_
"aprod"::S]$Lisp_
,["integer"::S,"m"::S,"n"::S,"itnlim"::S,"msglvl"::S_
,"lrwork"::S,"liwork"::S,"itn"::S,"inform"::S,"ifail"::S,_
["iwork"::S,"liwork"::S]$Lisp]$Lisp]$Lisp,_
["x"::S,"se"::S,"itn"::S,"anorm"::S,"acond"::S,"rnorm"::S,_
"arnorm"::S,"xnorm"::S,"inform"::S,"b"::S,"ifail"::S]$Lisp,_
[([mArg::Any,nArg::Any,dampArg::Any,atolArg::Any,btolArg::Any,_
conlimArg::Any,itnlimArg::Any,msglvlArg::Any,lrworkArg::Any,_
liworkArg::Any,ifailArg::Any,bArg::Any ])_
@List Any]$Lisp)$Lisp)_
pretend List (Record(key:Symbol,entry:Any))]$Result
|