This file is indexed.

/usr/share/axiom-20170501/src/algebra/NAGF07.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
)abbrev package NAGF07 NagLapack
++ Author: Godfrey Nolan and Mike Dewar
++ Date Created: Jan 1994
++ Date Last Updated: Thu May 12 17:45:42 1994
++ Description:
++ This package uses the NAG Library to compute matrix
++ factorizations, and to solve systems of linear equations
++ following the matrix factorizations.

NagLapack() : SIG == CODE where

  S ==> Symbol
  FOP ==> FortranOutputStackPackage

  SIG ==> with

    f07adf : (Integer,Integer,Integer,Matrix DoubleFloat) -> Result 
      ++ f07adf(m,n,lda,a)
      ++ (DGETRF) computes the LU factorization of a real m by n 
      ++ matrix.
      ++ See \downlink{Manual Page}{manpageXXf07adf}.

    f07aef : (String,Integer,Integer,Matrix DoubleFloat,_
        Integer,Matrix Integer,Integer,Matrix DoubleFloat) -> Result 
      ++ f07aef(trans,n,nrhs,a,lda,ipiv,ldb,b)
      ++ (DGETRS) solves a real system of linear equations with 
      ++                                     T                     
      ++ multiple right-hand sides, AX=B or A X=B, where A has been 
      ++ factorized by F07ADF (DGETRF).
      ++ See \downlink{Manual Page}{manpageXXf07aef}.

    f07fdf : (String,Integer,Integer,Matrix DoubleFloat) -> Result 
      ++ f07fdf(uplo,n,lda,a)
      ++ (DPOTRF) computes the Cholesky factorization of a real 
      ++ symmetric positive-definite matrix.
      ++ See \downlink{Manual Page}{manpageXXf07fdf}.

    f07fef : (String,Integer,Integer,Matrix DoubleFloat,_
        Integer,Integer,Matrix DoubleFloat) -> Result 
      ++ f07fef(uplo,n,nrhs,a,lda,ldb,b)
      ++ (DPOTRS) solves a real symmetric positive-definite system 
      ++ of linear equations with multiple right-hand sides, AX=B, where A
      ++ has been factorized by F07FDF (DPOTRF).
      ++ See \downlink{Manual Page}{manpageXXf07fef}.

  CODE ==> add

    import Lisp
    import DoubleFloat
    import Any
    import Record
    import Integer
    import Matrix DoubleFloat
    import Boolean
    import NAGLinkSupportPackage
    import AnyFunctions1(Integer)
    import AnyFunctions1(Matrix DoubleFloat)
    import AnyFunctions1(String)
    import AnyFunctions1(Matrix Integer)


    f07adf(mArg:Integer,nArg:Integer,ldaArg:Integer,_
        aArg:Matrix DoubleFloat): Result == 
        [(invokeNagman(NIL$Lisp,_
        "f07adf",_
        ["m"::S,"n"::S,"lda"::S,"info"::S,"ipiv"::S,"a"::S]$Lisp,_
        ["ipiv"::S,"info"::S]$Lisp,_
        [["double"::S,["a"::S,"lda"::S,"n"::S]$Lisp_
        ]$Lisp_
        ,["integer"::S,"m"::S,"n"::S,"lda"::S,["ipiv"::S,"m"::S]$Lisp_
        ,"info"::S]$Lisp_
        ]$Lisp,_
        ["ipiv"::S,"info"::S,"a"::S]$Lisp,_
        [([mArg::Any,nArg::Any,ldaArg::Any,aArg::Any ])_
        @List Any]$Lisp)$Lisp)_
        pretend List (Record(key:Symbol,entry:Any))]$Result

    f07aef(transArg:String,nArg:Integer,nrhsArg:Integer,_
        aArg:Matrix DoubleFloat,ldaArg:Integer,ipivArg:Matrix Integer,_
        ldbArg:Integer,bArg:Matrix DoubleFloat): Result == 
        [(invokeNagman(NIL$Lisp,_
        "f07aef",_
        ["trans"::S,"n"::S,"nrhs"::S,"lda"::S,"ldb"::S_
        ,"info"::S,"a"::S,"ipiv"::S,"b"::S]$Lisp,_
        ["info"::S]$Lisp,_
        [["double"::S,["a"::S,"lda"::S,"n"::S]$Lisp_
        ,["b"::S,"ldb"::S,"nrhs"::S]$Lisp]$Lisp_
        ,["integer"::S,"n"::S,"nrhs"::S,"lda"::S,["ipiv"::S,"n"::S]$Lisp_
        ,"ldb"::S,"info"::S]$Lisp_
        ,["character"::S,"trans"::S]$Lisp_
        ]$Lisp,_
        ["info"::S,"b"::S]$Lisp,_
        [([transArg::Any,nArg::Any,nrhsArg::Any,ldaArg::Any,_
        ldbArg::Any,aArg::Any,ipivArg::Any,bArg::Any ])_
        @List Any]$Lisp)$Lisp)_
        pretend List (Record(key:Symbol,entry:Any))]$Result

    f07fdf(uploArg:String,nArg:Integer,ldaArg:Integer,_
        aArg:Matrix DoubleFloat): Result == 
        [(invokeNagman(NIL$Lisp,_
        "f07fdf",_
        ["uplo"::S,"n"::S,"lda"::S,"info"::S,"a"::S]$Lisp,_
        ["info"::S]$Lisp,_
        [["double"::S,["a"::S,"lda"::S,"n"::S]$Lisp_
        ]$Lisp_
        ,["integer"::S,"n"::S,"lda"::S,"info"::S]$Lisp_
        ,["character"::S,"uplo"::S]$Lisp_
        ]$Lisp,_
        ["info"::S,"a"::S]$Lisp,_
        [([uploArg::Any,nArg::Any,ldaArg::Any,aArg::Any ])_
        @List Any]$Lisp)$Lisp)_
        pretend List (Record(key:Symbol,entry:Any))]$Result

    f07fef(uploArg:String,nArg:Integer,nrhsArg:Integer,_
        aArg:Matrix DoubleFloat,ldaArg:Integer,ldbArg:Integer,_
        bArg:Matrix DoubleFloat): Result == 
        [(invokeNagman(NIL$Lisp,_
        "f07fef",_
        ["uplo"::S,"n"::S,"nrhs"::S,"lda"::S,"ldb"::S_
        ,"info"::S,"a"::S,"b"::S]$Lisp,_
        ["info"::S]$Lisp,_
        [["double"::S,["a"::S,"lda"::S,"n"::S]$Lisp_
        ,["b"::S,"ldb"::S,"nrhs"::S]$Lisp]$Lisp_
        ,["integer"::S,"n"::S,"nrhs"::S,"lda"::S,"ldb"::S_
        ,"info"::S]$Lisp_
        ,["character"::S,"uplo"::S]$Lisp_
        ]$Lisp,_
        ["info"::S,"b"::S]$Lisp,_
        [([uploArg::Any,nArg::Any,nrhsArg::Any,ldaArg::Any,_
        ldbArg::Any,aArg::Any,bArg::Any ])_
        @List Any]$Lisp)$Lisp)_
        pretend List (Record(key:Symbol,entry:Any))]$Result