This file is indexed.

/usr/share/axiom-20170501/src/algebra/NODE1.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
)abbrev package NODE1 NonLinearFirstOrderODESolver
++ Author: Manuel Bronstein
++ Date Created: 2 September 1991
++ Date Last Updated: 14 October 1994
++ Description: 
++ NonLinearFirstOrderODESolver provides a function
++ for finding closed form first integrals of nonlinear ordinary
++ differential equations of order 1.

NonLinearFirstOrderODESolver(R, F) : SIG == CODE where
  R: Join(OrderedSet, EuclideanDomain, RetractableTo Integer,
          LinearlyExplicitRingOver Integer, CharacteristicZero)
  F: Join(AlgebraicallyClosedFunctionSpace R, TranscendentalFunctionCategory,
          PrimitiveFunctionCategory)

  N   ==> NonNegativeInteger
  Q   ==> Fraction Integer
  UQ  ==> Union(Q, "failed")
  OP  ==> BasicOperator
  SY  ==> Symbol
  K   ==> Kernel F
  U   ==> Union(F, "failed")
  P   ==> SparseMultivariatePolynomial(R, K)
  REC ==> Record(coef:Q, logand:F)
  SOL ==> Record(particular: F,basis: List F)
  BER ==> Record(coef1:F, coefn:F, exponent:N)

  SIG ==> with

    solve : (F, F, OP, SY) -> U
      ++ solve(M(x,y), N(x,y), y, x) returns \spad{F(x,y)} such that
      ++ \spad{F(x,y) = c} for a constant \spad{c} is a first integral
      ++ of the equation \spad{M(x,y) dx + N(x,y) dy  = 0}, or
      ++ "failed" if no first-integral can be found.

  CODE ==> add

    import ODEIntegration(R, F)
    import ElementaryFunctionODESolver(R, F)    -- recursive dependency!

    checkBernoulli   : (F, F, K) -> Union(BER, "failed")
    solveBernoulli   : (BER, OP, SY, F) -> Union(F, "failed")
    checkRiccati     : (F, F, K) -> Union(List F, "failed")
    solveRiccati     : (List F, OP, SY, F) -> Union(F, "failed")
    partSolRiccati   : (List F, OP, SY, F) -> Union(F, "failed")
    integratingFactor: (F, F, SY, SY) -> U

    unk    := new()$SY

    kunk:K := kernel unk

    solve(m, n, y, x) ==
      -- first replace the operator y(x) by a new symbol z in m(x,y) and n(x,y)
      lk:List(K) := [retract(yx := y(x::F))@K]
      lv:List(F) := [kunk::F]
      mm := eval(m, lk, lv)
      nn := eval(n, lk, lv)
      -- put over a common denominator (to balance m and n)
      d := lcm(denom mm, denom nn)::F
      mm := d * mm
      nn := d * nn
      -- look for an integrating factor mu
      (u := integratingFactor(mm, nn, unk, x)) case F =>
        mu := u::F
        mm := mm * mu
        nn := nn * mu
        eval(int(mm,x) + int(nn-int(differentiate(mm,unk),x), unk),[kunk],[yx])
      -- check for Bernoulli equation
      (w := checkBernoulli(m, n, k1 := first lk)) case BER =>
        solveBernoulli(w::BER, y, x, yx)
      -- check for Riccati equation
      (v := checkRiccati(m, n, k1)) case List(F) =>
        solveRiccati(v::List(F), y, x, yx)
      "failed"

    -- look for an integrating factor
    integratingFactor(m, n, y, x) ==
      -- check first for exactness
      zero?(d := differentiate(m, y) - differentiate(n, x)) => 1
      -- look for an integrating factor involving x only
      not member?(y, variables(f := d / n)) => expint(f, x)
      -- look for an integrating factor involving y only
      not member?(x, variables(f := - d / m)) => expint(f, y)
      -- room for more techniques later on (for example Prelle-Singer)
      "failed"

    -- check whether the equation is of the form
    --    dy/dx + p(x)y + q(x)y^N = 0   with N > 1
    -- whether m/n is of the form  p(x) y + q(x) y^N
    -- returns [p, q, N] if the equation is in that form
    checkBernoulli(m, n, ky) ==
      r := denom(f := m / n)::F
      (not freeOf?(r, y := ky::F))
          or (d := degree(p := univariate(numer f, ky))) < 2
            or degree(pp := reductum p) ^= 1 or reductum(pp) ^= 0
              or (not freeOf?(a := (leadingCoefficient(pp)::F), y))
               or (not freeOf?(b := (leadingCoefficient(p)::F), y)) => "failed"
      [a / r, b / r, d]

    -- solves the equation dy/dx + rec.coef1 y + rec.coefn y^rec.exponent = 0
    -- the change of variable v = y^{1-n} transforms the above equation to
    --  dv/dx + (1 - n) p v + (1 - n) q = 0
    solveBernoulli(rec, y, x, yx) ==
      n1 := 1 - rec.exponent::Integer
      deq := differentiate(yx, x) + n1 * rec.coef1 * yx + n1 * rec.coefn
      sol := solve(deq, y, x)::SOL          -- can always solve for order 1
      -- if v = vp + c v0 is the general solution of the linear equation, then
      -- the general first integral for the Bernoulli equation is
      -- (y^{1-n} - vp) / v0  =   c   for any constant c
      (yx**n1 - sol.particular) / first(sol.basis)

    -- check whether the equation is of the form
    --    dy/dx + q0(x) + q1(x)y + q2(x)y^2 = 0
    -- whether m/n is a quadratic polynomial in y.
    -- returns the list [q0, q1, q2] if the equation is in that form
    checkRiccati(m, n, ky) ==
      q := denom(f := m / n)::F
      (not freeOf?(q, y := ky::F)) or degree(p := univariate(numer f, ky)) > 2
         or (not freeOf?(a0 := (coefficient(p, 0)::F), y))
           or (not freeOf?(a1 := (coefficient(p, 1)::F), y))
             or (not freeOf?(a2 := (coefficient(p, 2)::F), y)) => "failed"
      [a0 / q, a1 / q, a2 / q]

    -- solves the equation dy/dx + l.1 + l.2 y + l.3 y^2 = 0
    solveRiccati(l, y, x, yx) ==
      -- get first a particular solution
      (u := partSolRiccati(l, y, x, yx)) case "failed" => "failed"
      -- once a particular solution yp is known, the general solution is of the
      -- form  y = yp + 1/v  where v satisfies the linear 1st order equation
      -- v' - (l.2 + 2 l.3 yp) v = l.3
      deq := differentiate(yx, x) - (l.2 + 2 * l.3 * u::F) * yx - l.3
      gsol := solve(deq, y, x)::SOL         -- can always solve for order 1
      -- if v = vp + c v0 is the general solution of the above equation, then
      -- the general first integral for the Riccati equation is
      --  (1/(y - yp) - vp) / v0  =   c   for any constant c
      (inv(yx - u::F) - gsol.particular) / first(gsol.basis)

    -- looks for a particular solution of dy/dx + l.1 + l.2 y + l.3 y^2 = 0
    partSolRiccati(l, y, x, yx) ==
      -- we first do the change of variable y = z / l.3, which transforms
      -- the equation into  dz/dx + l.1 l.3 + (l.2 - l.3'/l.3) z + z^2 = 0
      q0 := l.1 * (l3 := l.3)
      q1 := l.2 - differentiate(l3, x) / l3
      -- the equation dz/dx + q0 + q1 z + z^2 = 0 is transformed by the change
      -- of variable z = w'/w into the linear equation w'' + q1 w' + q0 w = 0
      lineq := differentiate(yx, x, 2) + q1 * differentiate(yx, x) + q0 * yx
      -- should be made faster by requesting a particular nonzero solution only
      (not((gsol := solve(lineq, y, x)) case SOL))
                              or empty?(bas := (gsol::SOL).basis) => "failed"
      differentiate(first bas, x) / (l3 * first bas)