This file is indexed.

/usr/share/axiom-20170501/src/algebra/NORMPK.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
)abbrev package NORMPK NormalizationPackage
++ Author: Marc Moreno Maza
++ Date Created: 09/23/1998
++ Date Last Updated: 12/16/1998
++ References:
++  [1] D. LAZARD "A new method for solving algebraic systems of 
++      positive dimension" Discr. App. Math. 33:147-160,1991
++  [2] M. MORENO MAZA and R. RIOBOO "Computations of gcd over
++      algebraic towers of simple extensions" In proceedings of AAECC11
++      Paris, 1995.
++  [3] M. MORENO MAZA "Calculs de pgcd au-dessus des tours
++      d'extensions simples et resolution des systemes d'equations
++      algebriques" These, Universite P.etM. Curie, Paris, 1997.
++ Description: 
++ A package for computing normalized assocites of univariate polynomials
++ with coefficients in a tower of simple extensions of a field.

NormalizationPackage(R,E,V,P,TS) : SIG == CODE where
  R : GcdDomain
  E : OrderedAbelianMonoidSup
  V : OrderedSet
  P : RecursivePolynomialCategory(R,E,V)
  TS : RegularTriangularSetCategory(R,E,V,P)

  N ==> NonNegativeInteger
  Z ==> Integer
  B ==> Boolean
  S ==> String
  K ==> Fraction R
  LP ==> List P
  PWT ==> Record(val : P, tower : TS)

  BWT ==> Record(val : Boolean, tower : TS)
  LpWT ==> Record(val : (List P), tower : TS)
  Split ==> List TS
  polsetpack ==> PolynomialSetUtilitiesPackage(R,E,V,P)
  regsetgcdpack ==> SquareFreeRegularTriangularSetGcdPackage(R,E,V,P,TS)

  SIG ==> with

     recip : (P, TS) -> Record(num:P,den:P)
       ++ \axiom{recip(p,ts)} returns the inverse of \axiom{p} w.r.t \spad{ts}
       ++ assuming that \axiom{p} is invertible w.r.t \spad{ts}.

     normalizedAssociate : (P, TS) -> P
       ++ \axiom{normalizedAssociate(p,ts)} returns a normalized polynomial 
       ++ \axiom{n} w.r.t. \spad{ts} such that \axiom{n} and \axiom{p} are
       ++ associates w.r.t \spad{ts} and assuming that \axiom{p} is invertible 
       ++ w.r.t \spad{ts}.

     normalize : (P, TS) -> List PWT
       ++ \axiom{normalize(p,ts)} normalizes \axiom{p} w.r.t \spad{ts}.

     outputArgs : (S, S, P, TS) -> Void
       ++ \axiom{outputArgs(s1,s2,p,ts)} 
       ++ is an internal subroutine, exported only for developement.

     normInvertible? : (P, TS) -> List BWT
       ++ \axiom{normInvertible?(p,ts)} 
       ++ is an internal subroutine, exported only for developement.

  CODE ==> add

     if TS has SquareFreeRegularTriangularSetCategory(R,E,V,P)
     then

       normInvertible?(p:P, ts:TS): List BWT ==
         stoseInvertible?_sqfreg(p,ts)$regsetgcdpack

     else

       normInvertible?(p:P, ts:TS): List BWT ==
         stoseInvertible?_reg(p,ts)$regsetgcdpack

     if (R has RetractableTo(Integer)) and (V has ConvertibleTo(Symbol))
     then 

       outputArgs(s1:S, s2: S, p:P,ts:TS): Void ==
         if not empty? s1 then output(s1, p::OutputForm)$OutputPackage
         if not empty? s1 then _
              output(s1,(convert(p)@String)::OutputForm)$OutputPackage
         output(" ")$OutputPackage
         if not empty? s2 then output(s2, ts::OutputForm)$OutputPackage       
         empty? s2 => void()
         output(s2,("[")::OutputForm)$OutputPackage
         lp: List P := members(ts)
         for q in lp repeat
            output((convert(q)@String)::OutputForm)$OutputPackage
         output("]")$OutputPackage
         output(" ")$OutputPackage

     else

       outputArgs(s1:S, s2: S, p:P,ts:TS): Void ==
         if not empty? s1 then output(s1, p::OutputForm)$OutputPackage
         output(" ")$OutputPackage
         if not empty? s2 then output(s2, ts::OutputForm)$OutputPackage       
         output(" ")$OutputPackage

     recip(p:P,ts:TS): Record(num:P, den:P) ==
     -- ASSUME p is invertible w.r.t. ts
     -- ASSUME mvar(p) is algebraic w.r.t. ts
       v := mvar(p)
       ts_v := select(ts,v)::P
       if mdeg(p) < mdeg(ts_v)
         then
           hesrg: Record (gcd : P, coef2 : P)  := _
                    halfExtendedSubResultantGcd2(ts_v,p)$P
           d: P :=  hesrg.gcd; n: P := hesrg.coef2
         else
           hesrg: Record (gcd : P, coef1 : P) := _
                    halfExtendedSubResultantGcd1(p,ts_v)$P
           d: P :=  hesrg.gcd; n: P := hesrg.coef1
       g := gcd(n,d)
       (n, d) := ((n exquo g)::P, (d exquo g)::P)
       remn, remd: Record(rnum:R,polnum:P,den:R)
       remn := remainder(n,ts); remd := remainder(d,ts)
       cn := remn.rnum; pn := remn.polnum; dn := remn.den
       cd := remd.rnum; pd := remd.polnum; dp := remd.den
       k: K := (cn / cd) * (dp / dn)
       pn := removeZero(pn,ts)
       pd := removeZero(pd,ts)
       [numer(k) * pn, denom(k) * pd]$Record(num:P, den:P)

     normalizedAssociate(p:P,ts:TS): P ==
     -- ASSUME p is invertible or zero w.r.t. ts
       empty? ts => p
       zero?(p) => p
       ground?(p) => 1
       zero? initiallyReduce(init(p),ts) =>
         error "in normalizedAssociate$NORMPK: bad #1"
       vp := mvar(p)
       ip: P := p
       mp: P := 1
       tp: P := 0
       while not ground?(ip) repeat
         v := mvar(ip)
         if algebraic?(v,ts)
           then
             if v = vp
               then
                 ts_v := select(ts,v)::P
                 ip := lastSubResultant(ip,ts_v)$P
                 ip := remainder(ip,ts).polnum
                 -- ip := primitivePart stronglyReduce(ip,ts)
                 ip := primitivePart initiallyReduce(ip,ts)
               else
                 qr := recip(ip,ts)
                 ip := qr.den
                 tp := qr.num * tp
                 zero? ip =>
                     outputArgs("p = ", " ts = ",p,ts)
                     error _
                       "in normalizedAssociate$NORMPK: should never happen !"
           else
             tp := tail(ip) * mp + tp
             mp := mainMonomial(ip) * mp
             ip := init(ip)
       r := ip * mp + tp
       r := remainder(r,ts).polnum
       -- primitivePart stronglyReduce(r,ts)
       primitivePart initiallyReduce(r,ts)

     normalize(p: P, ts: TS): List PWT ==
       zero? p => [[p,ts]$PWT]
       ground? p => [[1,ts]$PWT]
       zero? initiallyReduce(init(p),ts) =>
         error "in normalize$NORMPK: init(#1) reduces to 0 w.r.t. #2"
       --output("Entering  normalize")$OutputPackage
       --outputArgs("p = ", " ts = ",p,ts)
       --output("Calling  normInvertible?")$OutputPackage
       lbwt: List BWT := normInvertible?(p,ts)
       --output("Result is: ")$OutputPackage
       --output(lbwt::OutputForm)$OutputPackage
       lpwt: List PWT := []
       for bwt in lbwt repeat
         us := bwt.tower
         q := remainder(p,us).polnum
         q := removeZero(q,us)
         bwt.val =>
           --output("Calling  normalizedAssociate")$OutputPackage
           --outputArgs("q = ", " us = ",q,us)
           lpwt := cons([normalizedAssociate(q,us)@P,us]$PWT, lpwt)
           --output("Leaving  normalizedAssociate")$OutputPackage
         zero? q => lpwt := cons([0$P,us]$PWT, lpwt)
         lpwt := concat(normalize(q,us)@(List PWT),lpwt)
       lpwt