/usr/share/axiom-20170501/src/algebra/NORMPK.spad is in axiom-source 20170501-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 | )abbrev package NORMPK NormalizationPackage
++ Author: Marc Moreno Maza
++ Date Created: 09/23/1998
++ Date Last Updated: 12/16/1998
++ References:
++ [1] D. LAZARD "A new method for solving algebraic systems of
++ positive dimension" Discr. App. Math. 33:147-160,1991
++ [2] M. MORENO MAZA and R. RIOBOO "Computations of gcd over
++ algebraic towers of simple extensions" In proceedings of AAECC11
++ Paris, 1995.
++ [3] M. MORENO MAZA "Calculs de pgcd au-dessus des tours
++ d'extensions simples et resolution des systemes d'equations
++ algebriques" These, Universite P.etM. Curie, Paris, 1997.
++ Description:
++ A package for computing normalized assocites of univariate polynomials
++ with coefficients in a tower of simple extensions of a field.
NormalizationPackage(R,E,V,P,TS) : SIG == CODE where
R : GcdDomain
E : OrderedAbelianMonoidSup
V : OrderedSet
P : RecursivePolynomialCategory(R,E,V)
TS : RegularTriangularSetCategory(R,E,V,P)
N ==> NonNegativeInteger
Z ==> Integer
B ==> Boolean
S ==> String
K ==> Fraction R
LP ==> List P
PWT ==> Record(val : P, tower : TS)
BWT ==> Record(val : Boolean, tower : TS)
LpWT ==> Record(val : (List P), tower : TS)
Split ==> List TS
polsetpack ==> PolynomialSetUtilitiesPackage(R,E,V,P)
regsetgcdpack ==> SquareFreeRegularTriangularSetGcdPackage(R,E,V,P,TS)
SIG ==> with
recip : (P, TS) -> Record(num:P,den:P)
++ \axiom{recip(p,ts)} returns the inverse of \axiom{p} w.r.t \spad{ts}
++ assuming that \axiom{p} is invertible w.r.t \spad{ts}.
normalizedAssociate : (P, TS) -> P
++ \axiom{normalizedAssociate(p,ts)} returns a normalized polynomial
++ \axiom{n} w.r.t. \spad{ts} such that \axiom{n} and \axiom{p} are
++ associates w.r.t \spad{ts} and assuming that \axiom{p} is invertible
++ w.r.t \spad{ts}.
normalize : (P, TS) -> List PWT
++ \axiom{normalize(p,ts)} normalizes \axiom{p} w.r.t \spad{ts}.
outputArgs : (S, S, P, TS) -> Void
++ \axiom{outputArgs(s1,s2,p,ts)}
++ is an internal subroutine, exported only for developement.
normInvertible? : (P, TS) -> List BWT
++ \axiom{normInvertible?(p,ts)}
++ is an internal subroutine, exported only for developement.
CODE ==> add
if TS has SquareFreeRegularTriangularSetCategory(R,E,V,P)
then
normInvertible?(p:P, ts:TS): List BWT ==
stoseInvertible?_sqfreg(p,ts)$regsetgcdpack
else
normInvertible?(p:P, ts:TS): List BWT ==
stoseInvertible?_reg(p,ts)$regsetgcdpack
if (R has RetractableTo(Integer)) and (V has ConvertibleTo(Symbol))
then
outputArgs(s1:S, s2: S, p:P,ts:TS): Void ==
if not empty? s1 then output(s1, p::OutputForm)$OutputPackage
if not empty? s1 then _
output(s1,(convert(p)@String)::OutputForm)$OutputPackage
output(" ")$OutputPackage
if not empty? s2 then output(s2, ts::OutputForm)$OutputPackage
empty? s2 => void()
output(s2,("[")::OutputForm)$OutputPackage
lp: List P := members(ts)
for q in lp repeat
output((convert(q)@String)::OutputForm)$OutputPackage
output("]")$OutputPackage
output(" ")$OutputPackage
else
outputArgs(s1:S, s2: S, p:P,ts:TS): Void ==
if not empty? s1 then output(s1, p::OutputForm)$OutputPackage
output(" ")$OutputPackage
if not empty? s2 then output(s2, ts::OutputForm)$OutputPackage
output(" ")$OutputPackage
recip(p:P,ts:TS): Record(num:P, den:P) ==
-- ASSUME p is invertible w.r.t. ts
-- ASSUME mvar(p) is algebraic w.r.t. ts
v := mvar(p)
ts_v := select(ts,v)::P
if mdeg(p) < mdeg(ts_v)
then
hesrg: Record (gcd : P, coef2 : P) := _
halfExtendedSubResultantGcd2(ts_v,p)$P
d: P := hesrg.gcd; n: P := hesrg.coef2
else
hesrg: Record (gcd : P, coef1 : P) := _
halfExtendedSubResultantGcd1(p,ts_v)$P
d: P := hesrg.gcd; n: P := hesrg.coef1
g := gcd(n,d)
(n, d) := ((n exquo g)::P, (d exquo g)::P)
remn, remd: Record(rnum:R,polnum:P,den:R)
remn := remainder(n,ts); remd := remainder(d,ts)
cn := remn.rnum; pn := remn.polnum; dn := remn.den
cd := remd.rnum; pd := remd.polnum; dp := remd.den
k: K := (cn / cd) * (dp / dn)
pn := removeZero(pn,ts)
pd := removeZero(pd,ts)
[numer(k) * pn, denom(k) * pd]$Record(num:P, den:P)
normalizedAssociate(p:P,ts:TS): P ==
-- ASSUME p is invertible or zero w.r.t. ts
empty? ts => p
zero?(p) => p
ground?(p) => 1
zero? initiallyReduce(init(p),ts) =>
error "in normalizedAssociate$NORMPK: bad #1"
vp := mvar(p)
ip: P := p
mp: P := 1
tp: P := 0
while not ground?(ip) repeat
v := mvar(ip)
if algebraic?(v,ts)
then
if v = vp
then
ts_v := select(ts,v)::P
ip := lastSubResultant(ip,ts_v)$P
ip := remainder(ip,ts).polnum
-- ip := primitivePart stronglyReduce(ip,ts)
ip := primitivePart initiallyReduce(ip,ts)
else
qr := recip(ip,ts)
ip := qr.den
tp := qr.num * tp
zero? ip =>
outputArgs("p = ", " ts = ",p,ts)
error _
"in normalizedAssociate$NORMPK: should never happen !"
else
tp := tail(ip) * mp + tp
mp := mainMonomial(ip) * mp
ip := init(ip)
r := ip * mp + tp
r := remainder(r,ts).polnum
-- primitivePart stronglyReduce(r,ts)
primitivePart initiallyReduce(r,ts)
normalize(p: P, ts: TS): List PWT ==
zero? p => [[p,ts]$PWT]
ground? p => [[1,ts]$PWT]
zero? initiallyReduce(init(p),ts) =>
error "in normalize$NORMPK: init(#1) reduces to 0 w.r.t. #2"
--output("Entering normalize")$OutputPackage
--outputArgs("p = ", " ts = ",p,ts)
--output("Calling normInvertible?")$OutputPackage
lbwt: List BWT := normInvertible?(p,ts)
--output("Result is: ")$OutputPackage
--output(lbwt::OutputForm)$OutputPackage
lpwt: List PWT := []
for bwt in lbwt repeat
us := bwt.tower
q := remainder(p,us).polnum
q := removeZero(q,us)
bwt.val =>
--output("Calling normalizedAssociate")$OutputPackage
--outputArgs("q = ", " us = ",q,us)
lpwt := cons([normalizedAssociate(q,us)@P,us]$PWT, lpwt)
--output("Leaving normalizedAssociate")$OutputPackage
zero? q => lpwt := cons([0$P,us]$PWT, lpwt)
lpwt := concat(normalize(q,us)@(List PWT),lpwt)
lpwt
|