This file is indexed.

/usr/share/axiom-20170501/src/algebra/NSDPS.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
)abbrev domain NSDPS NeitherSparseOrDensePowerSeries
++ Authors: Gaetan Hache
++ Date Created: june 1996 
++ Date Last Updated: May 2010 by Tim Daly
++ Description: 
++ This domain is part of the PAFF package

NeitherSparseOrDensePowerSeries(K) : SIG == CODE where
  K : Field

  SI   ==> SingleInteger
  INT  ==> Integer
  TERM ==> Record(k:INT,c:K)
  SER  ==> Stream(TERM)
  NNI  ==> NonNegativeInteger

  SIG ==> Join(LocalPowerSeriesCategory(K),LazyStreamAggregate(TERM)) with
  
    findTerm : (%,Integer) -> TERM
    
  CODE ==> SER add

    Rep:=SER
    
    var : Symbol := 't
    
    multC: (K,INT,%) -> %

    orderIfNegative(s:%)==
      zero?(s) => "failed"
      f:=frst(s)
      f.k >= 0 => "failed"
      zero?(f.c) => orderIfNegative(rest(s))
      f.k

    posExpnPart(s)==
      zero?(s) => 0
      o:=order s
      (o >= 0) => s
      posExpnPart(rst s)
            
    findTerm(s,n)==
      empty?(s) =>  [n,0]$TERM
      f:=frst(s)
      f.k > n => [n,0]$TERM
      f.k = n => f
      findTerm(rst(s),n)
    
    findCoef(s,i)==findTerm(s,i).c
    
    coerce(s:%):SER == s::Rep

    coerce(s:SER):%==s

    localVarForPrintInfo:Boolean:=false()

    printInfo==localVarForPrintInfo

    printInfo(flag)==localVarForPrintInfo:=flag

    outTerm: TERM -> OutputForm

    removeZeroes(s)== delay
      zero?(s) => 0
      f:=frst(s)
      zero?(f.c) => removeZeroes(rst(s))
      concat(f,removeZeroes(rst(s)))
    
    inv(ra)==
      a:=removeFirstZeroes ra
      o:=-order(a)
      aa:=shift(a,o)
      aai:=recip aa
      aai case "failed" => _
        error "Big problem in inv function from CreateSeries"
      shift(aai,o)

    iDiv: (%,%,K) -> %
    iDiv(x,y,ry0) == delay
     empty? x => 0$%
     sx:TERM:=frst x
     c0:K:=ry0 * sx.c
     nT:TERM:=[sx.k, c0]
     tc0:%:=series(sx.k,c0,0$%)
     concat(nT,iDiv(rst x - tc0 * rst y,y,ry0))
     
    recip x ==
      empty? x => "failed"
      rh1:TERM:=frst x
      ^zero?(rh1.k) => "failed"
      ic:K:= inv(rh1.c)
      delay
        concat([0,ic]$TERM,iDiv(- ic * rst x,x,ic))

    removeFirstZeroes(s)==
      zero?(s) => 0
      f:=frst(s)
      zero?(f.c) => removeFirstZeroes(rst(s))
      s
      
    sbt(sa,sbb)== delay
      sb:=removeFirstZeroes(sbb)
      o:=order sb
      ^(o > 0) => _
         error "Cannot substitute by a series of order less than 1  !!!!!"
      empty?(sa) or empty?(sb) => 0 
      fa:TERM:=frst(sa)
      fb:TERM:=frst(sb)
      firstElem:TERM:=[fa.k*fb.k, fa.c*(fb.c**fa.k)]
      zero?(fa.c) => sbt(rst(sa),sb) 
      concat(firstElem,  rest((fa.c) * sb ** (fa.k)) + sbt(rst(sa),sb)  )

    coerce(s:%):OutputForm==
      zero?(s) => "0" :: OutputForm
      count:SI:= _$streamCount$Lisp
      lstTerm:List TERM:=empty()
      rs:%:= s
      for i in 1..count while  ^empty?(rs) repeat
        fs:=frst rs
        rs:=rst rs
        lstTerm:=concat(lstTerm,fs)
      listOfOutTerm:List OutputForm:=_
        [outTerm(t) for t in lstTerm | ^zero?(t.c) ]
      out:OutputForm:=
        if empty?(listOfOutTerm) then
          "0" :: OutputForm
        else
          reduce("+", listOfOutTerm)
      empty?(rs) => out
      out +  ("..." :: OutputForm)

    outTerm(t)==
      ee:=t.k
      cc:=t.c
      oe:OutputForm:=ee::OutputForm
      oc:OutputForm:=cc::OutputForm
      symb:OutputForm:= var :: OutputForm
      one?(cc) and one?(ee) => symb
      zero?(ee) => oc
      one?(cc) => symb ** oe
      one?(ee) => oc * symb
      oc * symb ** oe

    removeZeroes(n,s)== delay
      n < 0 => s
      zero?(s) => 0
      f:=frst(s)
      zero?(f.c) => removeZeroes(n-1, rst(s))
      concat(f,removeZeroes(n-1, rst(s)))

    order(s:%)==
      zero?(s) => error _
       "From order (PlaneCurveLocalPowerSeries): cannot compute the order of 0"
      f:=frst(s)
      zero?(f.c) => order(rest(s))
      f.k

    monomial2series(lpar,lexp,sh)==
      shift(reduce("*",[s**e for s in lpar for e in lexp]),sh)

    coefOfFirstNonZeroTerm(s:%)==
      zero?(s) => error _
       "From order (PlaneCurveLocalPowerSeries): cannot find the coefOfFirstNonZeroTerm"
      f:=frst(s)
      zero?(f.c) => coefOfFirstNonZeroTerm(rest(s))
      f.c

    degreeOfTermLower?: (TERM,INT) -> Boolean
    degreeOfTermLower?(t,n)== t.k < n

    filterUpTo(s,n)==filterWhile(degreeOfTermLower?(#1,n),s)

    series(exp,coef,s)==cons([exp,coef]$TERM,s)

    a:% ** n:NNI == -- delay
      zero?(n) => 1
      expt(a,n :: PositiveInteger)$RepeatedSquaring(%)

    0 == empty()

    1 == construct([[0,1]$TERM])

    zero?(a)==empty?(a::Rep)

    shift(s,n)== delay
      zero?(s) => 0
      fs:=frst(s)
      es:=fs.k
      concat([es+n,fs.c]$TERM,shift(rest(s),n))

    a:% + b:% == delay
        zero?(a) => b
        zero?(b) => a
        fa:=frst(a)
        fb:=frst(b)
        ea:=fa.k
        eb:=fb.k
        nc:K
        ea = eb => concat([ea,fa.c+fb.c]$TERM,rest(a) + rest(b))
        ea > eb => concat([eb,fb.c]$TERM,a + rest(b))
        eb > ea => concat([ea,fa.c]$TERM,rest(a) + b)

    - a:% == --delay
      multC( (-1) :: K , 0 , a)
    
    a:% - b:% == --delay
      a+(-b)

    multC(coef,n,s)== delay
        zero?(coef) => 0
        zero?(s) => 0
        f:=frst(s)
        concat([f.k+n,coef*f.c]$TERM,multC(coef,n,rest(s)))

    coef:K * s:% == delay
        zero?(coef) => 0
        zero?(s) => 0
        f:=frst(s)
        concat([f.k,coef*f.c]$TERM, coef *$% rest(s))

    s:% * coef:K == coef * s
    
    s1:% * s2:%== delay
        zero?(s1) or zero?(s2) => 0
        f1:TERM:=frst(s1)
        f2:TERM:=frst(s2)
        e1:INT:=f1.k; e2:INT:=f2.k
        c1:K:=f1.c;   c2:K:=f2.c
        concat([e1+e2,c1*c2]$TERM,_
               multC(c1,e1,rest(s2))+multC(c2,e2,rest(s1))+rest(s1)*rest(s2))