This file is indexed.

/usr/share/axiom-20170501/src/algebra/NUMODE.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
)abbrev package NUMODE NumericalOrdinaryDifferentialEquations
++ Author: Yurij Baransky
++ Date Created: October 90
++ Date Last Updated: October 90
++ Description:
++ This package is a suite of functions for the numerical integration of an
++ ordinary differential equation of n variables:\br
++ \tab{5}dy/dx = f(y,x)\tab{5}y is an n-vector\br
++ All the routines are based on a 4-th order Runge-Kutta kernel.
++ These routines generally have as arguments:\br
++ n, the number of dependent variables;\br
++ x1, the initial point;\br
++ h, the step size;\br
++ y, a vector of initial conditions of length n\br
++ which upon exit contains the solution at \spad{x1 + h};\br
++
++ \spad{derivs}, a function which computes the right hand side of the
++ ordinary differential equation: \spad{derivs(dydx,y,x)} computes 
++ \spad{dydx}, a vector which contains the derivative information.
++
++ In order of increasing complexity:\br
++ \tab{5}\spad{rk4(y,n,x1,h,derivs)} advances the solution vector to\br
++ \tab{5}\spad{x1 + h} and return the values in y.\br
++
++ \tab{5}\spad{rk4(y,n,x1,h,derivs,t1,t2,t3,t4)} is the same as\br
++ \tab{5}\spad{rk4(y,n,x1,h,derivs)} except that you must provide 4 scratch\br
++ \tab{5}arrays t1-t4 of size n.\br
++
++ \tab{5}Starting with y at x1, \spad{rk4f(y,n,x1,x2,ns,derivs)}\br
++ \tab{5}uses \spad{ns} fixed steps of a 4-th order Runge-Kutta\br
++ \tab{5}integrator to advance the solution vector to x2 and return\br
++ \tab{5}the values in y.  Argument x2, is the final point, and\br
++ \tab{5}\spad{ns}, the number of steps to take.
++
++ \spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} takes a 5-th order
++ Runge-Kutta step with monitoring of local truncation to ensure
++ accuracy and adjust stepsize.
++ The function takes two half steps and one full step and scales
++ the difference in solutions at the final point. If the error is
++ within \spad{eps}, the step is taken and the result is returned.
++ If the error is not within \spad{eps}, the stepsize if decreased
++ and the procedure is tried again until the desired accuracy is
++ reached. Upon input, an trial step size must be given and upon
++ return, an estimate of the next step size to use is returned as
++ well as the step size which produced the desired accuracy.
++ The scaled error is computed as\br
++ \tab{5}\spad{error = MAX(ABS((y2steps(i) - y1step(i))/yscal(i)))}\br
++ and this is compared against \spad{eps}. If this is greater
++ than \spad{eps}, the step size is reduced accordingly to\br
++ \tab{5}\spad{hnew = 0.9 * hdid * (error/eps)**(-1/4)}\br
++ If the error criterion is satisfied, then we check if the
++ step size was too fine and return a more efficient one. If
++ \spad{error > \spad{eps} * (6.0E-04)} then the next step size should be\br
++ \tab{5}\spad{hnext = 0.9 * hdid * (error/\spad{eps})**(-1/5)}\br
++ Otherwise \spad{hnext = 4.0 * hdid} is returned.
++ A more detailed discussion of this and related topics can be
++ found in the book "Numerical Recipies" by W.Press, B.P. Flannery, 
++ S.A. Teukolsky, W.T. Vetterling published by Cambridge University Press.
++
++ Argument \spad{step} is a record of 3 floating point
++ numbers \spad{(try , did , next)},
++ \spad{eps} is the required accuracy,
++ \spad{yscal} is the scaling vector for the difference in solutions.
++ On input, \spad{step.try} should be the guess at a step
++ size to achieve the accuracy.
++ On output, \spad{step.did} contains the step size which achieved the
++ accuracy and \spad{step.next} is the next step size to use.
++
++ \spad{rk4qc(y,n,x1,step,eps,yscal,derivs,t1,t2,t3,t4,t5,t6,t7)} is the
++ same as \spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} except that the user
++ must provide the 7 scratch arrays \spad{t1-t7} of size n.
++
++ \spad{rk4a(y,n,x1,x2,eps,h,ns,derivs)}
++ is a driver program which uses \spad{rk4qc} to integrate n ordinary
++ differential equations starting at x1 to x2, keeping the local
++ truncation error to within \spad{eps} by changing the local step size.
++ The scaling vector is defined as\br
++ \tab{5}\spad{yscal(i) = abs(y(i)) + abs(h*dydx(i)) + tiny}\br
++ where \spad{y(i)} is the solution at location x, \spad{dydx} is the
++ ordinary differential equation's right hand side, h is the current
++ step size and \spad{tiny} is 10 times the
++ smallest positive number representable.
++
++ The user must supply an estimate for a trial step size and
++ the maximum number of calls to \spad{rk4qc} to use.
++ Argument x2 is the final point,
++ \spad{eps} is local truncation,
++ \spad{ns} is the maximum number of call to \spad{rk4qc} to use.

NumericalOrdinaryDifferentialEquations() : SIG == CODE where

  L     ==> List
  V     ==> Vector
  B     ==> Boolean
  I     ==> Integer
  E     ==> OutputForm
  NF    ==> Float
  NNI   ==> NonNegativeInteger
  VOID  ==> Void
  OFORM ==> OutputForm
  RK4STEP ==> Record(try:NF, did:NF, next:NF)

  SIG ==> with

    rk4 : (V NF,I,NF,NF,  (V NF,V NF,NF) -> VOID) -> VOID
      ++ rk4(y,n,x1,h,derivs) uses a 4-th order Runge-Kutta method
      ++ to numerically integrate the ordinary differential equation
      ++ dy/dx = f(y,x) of n variables, where y is an n-vector.
      ++ Argument y is a vector of initial conditions of length n which upon exit
      ++ contains the solution at \spad{x1 + h}, n is the number of dependent
      ++ variables, x1 is the initial point, h is the step size, and
      ++ \spad{derivs} is a function which computes the right hand side of the
      ++ ordinary differential equation.
      ++ For details, see \spadtype{NumericalOrdinaryDifferentialEquations}.

    rk4 : (V NF,I,NF,NF,  (V NF,V NF,NF) -> VOID ,V NF,V NF,V NF,V NF) -> VOID
      ++ rk4(y,n,x1,h,derivs,t1,t2,t3,t4) is the same as
      ++ \spad{rk4(y,n,x1,h,derivs)} except that you must provide 4 scratch
      ++ arrays t1-t4 of size n.
      ++ For details, see \con{NumericalOrdinaryDifferentialEquations}.

    rk4a : (V NF,I,NF,NF,NF,NF,I,(V NF,V NF,NF) -> VOID ) -> VOID
      ++ rk4a(y,n,x1,x2,eps,h,ns,derivs) is a driver function for the
      ++ numerical integration of an ordinary differential equation
      ++ dy/dx = f(y,x) of n variables, where y is an n-vector
      ++ using a 4-th order Runge-Kutta method.
      ++ For details, see \con{NumericalOrdinaryDifferentialEquations}.

    rk4qc : (V NF,I,NF,RK4STEP,NF,V NF,(V NF,V NF,NF) -> VOID) -> VOID
      ++ rk4qc(y,n,x1,step,eps,yscal,derivs) is a subfunction for the
      ++ numerical integration of an ordinary differential equation
      ++ dy/dx = f(y,x) of n variables, where y is an n-vector
      ++ using a 4-th order Runge-Kutta method.
      ++ This function takes a 5-th order Runge-Kutta step with monitoring
      ++ of local truncation to ensure accuracy and adjust stepsize.
      ++ For details, see \con{NumericalOrdinaryDifferentialEquations}.

    rk4qc : (V NF,I,NF,RK4STEP,NF,V NF,(V NF,V NF,NF) -> VOID
           ,V NF,V NF,V NF,V NF,V NF,V NF,V NF) -> VOID
      ++ rk4qc(y,n,x1,step,eps,yscal,derivs,t1,t2,t3,t4,t5,t6,t7) is a 
      ++ subfunction for the numerical integration of an ordinary differential
      ++ equation dy/dx = f(y,x) of n variables, where y is an n-vector
      ++ using a 4-th order Runge-Kutta method.
      ++ This function takes a 5-th order Runge-Kutta step with monitoring
      ++ of local truncation to ensure accuracy and adjust stepsize.
      ++ For details, see \con{NumericalOrdinaryDifferentialEquations}.

    rk4f : (V NF,I,NF,NF,I,(V NF,V NF,NF) -> VOID ) -> VOID
      ++ rk4f(y,n,x1,x2,ns,derivs) uses a 4-th order Runge-Kutta method
      ++ to numerically integrate the ordinary differential equation
      ++ dy/dx = f(y,x) of n variables, where y is an n-vector.
      ++ Starting with y at x1, this function uses \spad{ns} fixed
      ++ steps of a 4-th order Runge-Kutta integrator to advance the
      ++ solution vector to x2 and return the values in y.
      ++ For details, see \con{NumericalOrdinaryDifferentialEquations}.

  CODE ==>  add

   rk4qclocal : (V NF,V NF,I,NF,RK4STEP,NF,V NF,(V NF,V NF,NF) -> VOID
                ,V NF,V NF,V NF,V NF,V NF,V NF) -> VOID
   rk4local   : (V NF,V NF,I,NF,NF,V NF,(V NF,V NF,NF) -> VOID
                ,V NF,V NF,V NF) -> VOID
   import OutputPackage

   rk4a(ystart,nvar,x1,x2,eps,htry,nstep,derivs) ==
      y       : V NF := new(nvar::NNI,0.0)
      yscal   : V NF := new(nvar::NNI,1.0)
      dydx    : V NF := new(nvar::NNI,0.0)
      t1      : V NF := new(nvar::NNI,0.0)
      t2      : V NF := new(nvar::NNI,0.0)
      t3      : V NF := new(nvar::NNI,0.0)
      t4      : V NF := new(nvar::NNI,0.0)
      t5      : V NF := new(nvar::NNI,0.0)
      t6      : V NF := new(nvar::NNI,0.0)
      step    : RK4STEP := [htry,0.0,0.0]
      x       : NF   := x1
      tiny    : NF   := 10.0**(-(digits()+1)::I)
      m       : I    := nvar
      outlist : L OFORM := [x::E,x::E,x::E]
      i       : I
      iter    : I
      eps  := 1.0/eps
      for i in 1..m repeat
         y(i)  := ystart(i)
      for iter in 1..nstep repeat
         --compute the derivative
         derivs(dydx,y,x)
         --if overshoot, the set h accordingly
         if (x + step.try - x2) > 0.0 then
            step.try := x2 - x
         --find the correct scaling
         for i in 1..m repeat
            yscal(i) := abs(y(i)) + abs(step.try * dydx(i)) + tiny
         --take a quality controlled runge-kutta step
         rk4qclocal(y,dydx,nvar,x,step,eps,yscal,derivs
                   ,t1,t2,t3,t4,t5,t6)
         x         := x + step.did
         --check to see if done
         if (x-x2) >= 0.0 then
            leave
         --next stepsize to use
         step.try := step.next
      --end nstep repeat
      if iter = (nstep+1) then
         output("ode: ERROR ")
         outlist.1 := nstep::E
         outlist.2 := " steps to small, last h = "::E
         outlist.3 := step.did::E
         output(blankSeparate(outlist))
         output(" y= ",y::E)
      for i in 1..m repeat
         ystart(i) := y(i)

   rk4qc(y,n,x,step,eps,yscal,derivs) ==
      t1 : V NF := new(n::NNI,0.0)
      t2 : V NF := new(n::NNI,0.0)
      t3 : V NF := new(n::NNI,0.0)
      t4 : V NF := new(n::NNI,0.0)
      t5 : V NF := new(n::NNI,0.0)
      t6 : V NF := new(n::NNI,0.0)
      t7 : V NF := new(n::NNI,0.0)
      derivs(t7,y,x)
      eps := 1.0/eps
      rk4qclocal(y,t7,n,x,step,eps,yscal,derivs,t1,t2,t3,t4,t5,t6)

   rk4qc(y,n,x,step,eps,yscal,derivs,t1,t2,t3,t4,t5,t6,dydx) ==
      derivs(dydx,y,x)
      eps := 1.0/eps
      rk4qclocal(y,dydx,n,x,step,eps,yscal,derivs,t1,t2,t3,t4,t5,t6)

   rk4qclocal(y,dydx,n,x,step,eps,yscal,derivs
             ,t1,t2,t3,ysav,dysav,ytemp) ==
      xsav   : NF := x
      h      : NF := step.try
      fcor   : NF := 1.0/15.0
      safety : NF := 0.9
      grow   : NF := -0.20
      shrink : NF := -0.25
      errcon : NF := 0.6E-04  --(this is 4/safety)**(1/grow)
      hh     : NF
      errmax : NF
      i      : I
      m      : I  := n
      for i in 1..m repeat
         dysav(i) := dydx(i)
         ysav(i)  := y(i)
      --cut down step size till error criterion is met
      repeat
        --take two little steps to get to x + h
         hh := 0.5 * h
         rk4local(ysav,dysav,n,xsav,hh,ytemp,derivs,t1,t2,t3)
         x  := xsav + hh
         derivs(dydx,ytemp,x)
         rk4local(ytemp,dydx,n,x,hh,y,derivs,t1,t2,t3)
         x  := xsav + h
         --take one big step get to x + h
         rk4local(ysav,dysav,n,xsav,h,ytemp,derivs,t1,t2,t3)
         --compute the maximum scaled difference
         errmax := 0.0
         for i in 1..m repeat
            ytemp(i) := y(i) - ytemp(i)
            errmax   := max(errmax,abs(ytemp(i)/yscal(i)))
         --scale relative to required accuracy
         errmax := errmax * eps
         --update integration stepsize
         if (errmax > 1.0) then
            h := safety * h * (errmax ** shrink)
         else
            step.did := h
            if errmax > errcon then
               step.next := safety * h * (errmax ** grow)
            else
               step.next := 4 * h
            leave
      --make fifth order with 4-th order error estimate
      for i in 1..m repeat
         y(i) := y(i) + ytemp(i) * fcor

   rk4f(y,nvar,x1,x2,nstep,derivs) ==
     yt   : V NF := new(nvar::NNI,0.0)
     dyt  : V NF := new(nvar::NNI,0.0)
     dym  : V NF := new(nvar::NNI,0.0)
     dydx : V NF := new(nvar::NNI,0.0)
     ynew : V NF := new(nvar::NNI,0.0)
     h    : NF := (x2-x1) / (nstep::NF)
     x    : NF := x1
     i    : I
     j    : I
     -- start integrating
     for i in 1..nstep repeat
        derivs(dydx,y,x)
        rk4local(y,dydx,nvar,x,h,y,derivs,yt,dyt,dym)
        x := x + h

   rk4(y,n,x,h,derivs) ==
      t1 : V NF := new(n::NNI,0.0)
      t2 : V NF := new(n::NNI,0.0)
      t3 : V NF := new(n::NNI,0.0)
      t4 : V NF := new(n::NNI,0.0)
      derivs(t1,y,x)
      rk4local(y,t1,n,x,h,y,derivs,t2,t3,t4)

   rk4(y,n,x,h,derivs,t1,t2,t3,t4) ==
      derivs(t1,y,x)
      rk4local(y,t1,n,x,h,y,derivs,t2,t3,t4)

   rk4local(y,dydx,n,x,h,yout,derivs,yt,dyt,dym) ==
      hh : NF := h*0.5
      h6 : NF := h/6.0
      xh : NF := x+hh
      m  : I  := n
      i  : I
      -- first step
      for i in 1..m repeat
         yt(i) := y(i) + hh*dydx(i)
      -- second step
      derivs(dyt,yt,xh)
      for i in 1..m repeat
         yt(i) := y(i) + hh*dyt(i)
      -- third step
      derivs(dym,yt,xh)
      for i in 1..m repeat
         yt(i)  := y(i)   + h*dym(i)
         dym(i) := dyt(i) + dym(i)
      -- fourth step
      derivs(dyt,yt,x+h)
      for i in 1..m repeat
         yout(i) := y(i) + h6*( dydx(i) + 2.0*dym(i) + dyt(i) )