/usr/share/axiom-20170501/src/algebra/ODEEF.spad is in axiom-source 20170501-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 | )abbrev package ODEEF ElementaryFunctionODESolver
++ Author: Manuel Bronstein
++ Date Created: 18 March 1991
++ Date Last Updated: 8 March 1994
++ Description:
++ \spad{ElementaryFunctionODESolver} provides the top-level
++ functions for finding closed form solutions of ordinary
++ differential equations and initial value problems.
ElementaryFunctionODESolver(R, F) : SIG == CODE where
R : Join(OrderedSet, EuclideanDomain, RetractableTo Integer,
LinearlyExplicitRingOver Integer, CharacteristicZero)
F : Join(AlgebraicallyClosedFunctionSpace R, TranscendentalFunctionCategory,
PrimitiveFunctionCategory)
N ==> NonNegativeInteger
OP ==> BasicOperator
SY ==> Symbol
K ==> Kernel F
EQ ==> Equation F
V ==> Vector F
M ==> Matrix F
UP ==> SparseUnivariatePolynomial F
P ==> SparseMultivariatePolynomial(R, K)
LEQ ==> Record(left:UP, right:F)
NLQ ==> Record(dx:F, dy:F)
REC ==> Record(particular: F, basis: List F)
VEC ==> Record(particular: V, basis: List V)
ROW ==> Record(index: Integer, row: V, rh: F)
SYS ==> Record(mat:M, vec: V)
U ==> Union(REC, F, "failed")
UU ==> Union(F, "failed")
OPDIFF ==> "%diff"::SY
SIG ==> with
solve : (M, V, SY) -> Union(VEC, "failed")
++ solve(m, v, x) returns \spad{[v_p, [v_1,...,v_m]]} such that
++ the solutions of the system \spad{D y = m y + v} are
++ \spad{v_p + c_1 v_1 + ... + c_m v_m} where the \spad{c_i's} are
++ constants, and the \spad{v_i's} form a basis for the solutions of
++ \spad{D y = m y}.
++ \spad{x} is the dependent variable.
solve : (M, SY) -> Union(List V, "failed")
++ solve(m, x) returns a basis for the solutions of \spad{D y = m y}.
++ \spad{x} is the dependent variable.
solve : (List EQ, List OP, SY) -> Union(VEC, "failed")
++ solve([eq_1,...,eq_n], [y_1,...,y_n], x) returns either "failed"
++ or, if the equations form a fist order linear system, a solution
++ of the form \spad{[y_p, [b_1,...,b_n]]} where \spad{h_p} is a
++ particular solution and \spad{[b_1,...b_m]} are linearly independent
++ solutions of the associated homogenuous system.
++ error if the equations do not form a first order linear system
solve : (List F, List OP, SY) -> Union(VEC, "failed")
++ solve([eq_1,...,eq_n], [y_1,...,y_n], x) returns either "failed"
++ or, if the equations form a fist order linear system, a solution
++ of the form \spad{[y_p, [b_1,...,b_n]]} where \spad{h_p} is a
++ particular solution and \spad{[b_1,...b_m]} are linearly independent
++ solutions of the associated homogenuous system.
++ error if the equations do not form a first order linear system
solve : (EQ, OP, SY) -> U
++ solve(eq, y, x) returns either a solution of the ordinary differential
++ equation \spad{eq} or "failed" if no non-trivial solution can be found;
++ If the equation is linear ordinary, a solution is of the form
++ \spad{[h, [b1,...,bm]]} where \spad{h} is a particular solution
++ and \spad{[b1,...bm]} are linearly independent solutions of the
++ associated homogenuous equation \spad{f(x,y) = 0};
++ A full basis for the solutions of the homogenuous equation
++ is not always returned, only the solutions which were found;
++ If the equation is of the form {dy/dx = f(x,y)}, a solution is of
++ the form \spad{h(x,y)} where \spad{h(x,y) = c} is a first integral
++ of the equation for any constant \spad{c};
++ error if the equation is not one of those 2 forms;
solve : (F, OP, SY) -> U
++ solve(eq, y, x) returns either a solution of the ordinary differential
++ equation \spad{eq} or "failed" if no non-trivial solution can be found;
++ If the equation is linear ordinary, a solution is of the form
++ \spad{[h, [b1,...,bm]]} where \spad{h} is a particular solution and
++ and \spad{[b1,...bm]} are linearly independent solutions of the
++ associated homogenuous equation \spad{f(x,y) = 0};
++ A full basis for the solutions of the homogenuous equation
++ is not always returned, only the solutions which were found;
++ If the equation is of the form {dy/dx = f(x,y)}, a solution is of
++ the form \spad{h(x,y)} where \spad{h(x,y) = c} is a first integral
++ of the equation for any constant \spad{c};
solve : (EQ, OP, EQ, List F) -> UU
++ solve(eq, y, x = a, [y0,...,ym]) returns either the solution
++ of the initial value problem \spad{eq, y(a) = y0, y'(a) = y1,...}
++ or "failed" if the solution cannot be found;
++ error if the equation is not one linear ordinary or of the form
++ \spad{dy/dx = f(x,y)};
solve : (F, OP, EQ, List F) -> UU
++ solve(eq, y, x = a, [y0,...,ym]) returns either the solution
++ of the initial value problem \spad{eq, y(a) = y0, y'(a) = y1,...}
++ or "failed" if the solution cannot be found;
++ error if the equation is not one linear ordinary or of the form
++ \spad{dy/dx = f(x,y)};
CODE ==> add
import ODEIntegration(R, F)
import IntegrationTools(R, F)
import NonLinearFirstOrderODESolver(R, F)
getfreelincoeff : (F, K, SY) -> F
getfreelincoeff1: (F, K, List F) -> F
getlincoeff : (F, K) -> F
getcoeff : (F, K) -> UU
parseODE : (F, OP, SY) -> Union(LEQ, NLQ)
parseLODE : (F, List K, UP, SY) -> LEQ
parseSYS : (List F, List OP, SY) -> Union(SYS, "failed")
parseSYSeq : (F, List K, List K, List F, SY) -> Union(ROW, "failed")
solve(diffeq:EQ, y:OP, x:SY) == solve(lhs diffeq - rhs diffeq, y, x)
solve(leq: List EQ, lop: List OP, x:SY) ==
solve([lhs eq - rhs eq for eq in leq], lop, x)
solve(diffeq:EQ, y:OP, center:EQ, y0:List F) ==
solve(lhs diffeq - rhs diffeq, y, center, y0)
solve(m:M, x:SY) ==
(u := solve(m, new(nrows m, 0), x)) case "failed" => "failed"
u.basis
solve(m:M, v:V, x:SY) ==
Lx := LinearOrdinaryDifferentialOperator(F, diff x)
uu := solve(m, v, (z1,z2) +-> solve(z1, z2, x)_
$ElementaryFunctionLODESolver(R, F, Lx))$SystemODESolver(F, Lx)
uu case "failed" => "failed"
rec := uu::Record(particular: V, basis: M)
[rec.particular, [column(rec.basis, i) for i in 1..ncols(rec.basis)]]
solve(diffeq:F, y:OP, center:EQ, y0:List F) ==
a := rhs center
kx:K := kernel(x := retract(lhs(center))@SY)
(ur := parseODE(diffeq, y, x)) case NLQ =>
not ((#y0) = 1) => error "solve: more than one initial condition!"
rc := ur::NLQ
(u := solve(rc.dx, rc.dy, y, x)) case "failed" => "failed"
u::F - eval(u::F, [kx, retract(y(x::F))@K], [a, first y0])
rec := ur::LEQ
p := rec.left
Lx := LinearOrdinaryDifferentialOperator(F, diff x)
op:Lx := 0
while p ^= 0 repeat
op := op + monomial(leadingCoefficient p, degree p)
p := reductum p
solve(op, rec.right, x, a, y0)$ElementaryFunctionLODESolver(R, F, Lx)
solve(leq: List F, lop: List OP, x:SY) ==
(u := parseSYS(leq, lop, x)) case SYS =>
rec := u::SYS
solve(rec.mat, rec.vec, x)
error "solve: not a first order linear system"
solve(diffeq:F, y:OP, x:SY) ==
(u := parseODE(diffeq, y, x)) case NLQ =>
rc := u::NLQ
(uu := solve(rc.dx, rc.dy, y, x)) case "failed" => "failed"
uu::F
rec := u::LEQ
p := rec.left
Lx := LinearOrdinaryDifferentialOperator(F, diff x)
op:Lx := 0
while p ^= 0 repeat
op := op + monomial(leadingCoefficient p, degree p)
p := reductum p
(uuu := solve(op, rec.right, x)$ElementaryFunctionLODESolver(R, F, Lx))
case "failed" => "failed"
uuu::REC
-- returns [M, v] s.t. the equations are D x = M x + v
parseSYS(eqs, ly, x) ==
(n := #eqs) ^= #ly => "failed"
m:M := new(n, n, 0)
v:V := new(n, 0)
xx := x::F
lf := [y xx for y in ly]
lk0:List(K) := [retract(f)@K for f in lf]
lk1:List(K) := [retract(differentiate(f, x))@K for f in lf]
for eq in eqs repeat
(u := parseSYSeq(eq,lk0,lk1,lf,x)) case "failed" => return "failed"
rec := u::ROW
setRow_!(m, rec.index, rec.row)
v(rec.index) := rec.rh
[m, v]
parseSYSeq(eq, l0, l1, lf, x) ==
l := [k for k in varselect(kernels eq, x) | is?(k, OPDIFF)]
empty? l or not empty? rest l or zero?(n := position(k := first l,l1)) =>
"failed"
c := getfreelincoeff1(eq, k, lf)
eq := eq - c * k::F
v:V := new(#l0, 0)
for y in l0 for i in 1.. repeat
ci := getfreelincoeff1(eq, y, lf)
v.i := - ci / c
eq := eq - ci * y::F
[n, v, -eq]
-- returns either [p, g] where the equation (diffeq) is of the
-- form p(D)(y) = g
-- or [p, q] such that the equation (diffeq) is of the form p dx + q dy = 0
parseODE(diffeq, y, x) ==
f := y(x::F)
l:List(K) := [retract(f)@K]
n:N := 2
for k in varselect(kernels diffeq, x) | is?(k, OPDIFF) repeat
if (m := height k) > n then n := m
n := (n - 2)::N
-- build a list of kernels in the order [y^(n)(x),...,y''(x),y'(x),y(x)]
for i in 1..n repeat
l := concat(retract(f := differentiate(f, x))@K, l)
k:K -- #$^#& compiler requires this line and the next one too...
c:F
while not(empty? l) and zero?(c := getlincoeff(diffeq, k := first l))
repeat l := rest l
empty? l or empty? rest l => error "parseODE: equation has order 0"
diffeq := diffeq - c * (k::F)
ny := name y
l := rest l
height(k) > 3 => parseLODE(diffeq, l, monomial(c, #l), ny)
(u := getcoeff(diffeq, k := first l)) case "failed" => [diffeq, c]
eqrhs := (d := u::F) * (k::F) - diffeq
freeOf?(eqrhs, ny) and freeOf?(c, ny) and freeOf?(d, ny) =>
[monomial(c, 1) + d::UP, eqrhs]
[diffeq, c]
-- returns [p, g] where the equation (diffeq) is of the form p(D)(y) = g
parseLODE(diffeq, l, p, y) ==
not freeOf?(leadingCoefficient p, y) =>
error "parseLODE: not a linear ordinary differential equation"
d := degree(p)::Integer - 1
for k in l repeat
p := p + monomial(c := getfreelincoeff(diffeq, k, y), d::N)
d := d - 1
diffeq := diffeq - c * (k::F)
freeOf?(diffeq, y) => [p, - diffeq]
error "parseLODE: not a linear ordinary differential equation"
getfreelincoeff(f, k, y) ==
freeOf?(c := getlincoeff(f, k), y) => c
error "getfreelincoeff: not a linear ordinary differential equation"
getfreelincoeff1(f, k, ly) ==
c := getlincoeff(f, k)
for y in ly repeat
not freeOf?(c, y) =>
error "getfreelincoeff: not a linear ordinary differential equation"
c
getlincoeff(f, k) ==
(u := getcoeff(f, k)) case "failed" =>
error "getlincoeff: not an appropriate ordinary differential equation"
u::F
getcoeff(f, k) ==
(r := retractIfCan(univariate(denom f, k))@Union(P, "failed"))
case "failed" or degree(p := univariate(numer f, k)) > 1 => "failed"
coefficient(p, 1) / (r::P)
|