This file is indexed.

/usr/share/axiom-20170501/src/algebra/ODEPRIM.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
)abbrev package ODEPRIM PrimitiveRatDE
++ Author: Manuel Bronstein
++ Date Created: 1 March 1991
++ Date Last Updated: 1 February 1994
++ Description:
++ \spad{PrimitiveRatDE} provides functions for in-field solutions of linear
++ ordinary differential equations, in the transcendental case.
++ The derivation to use is given by the parameter \spad{L}.

PrimitiveRatDE(F, UP, L, LQ) : SIG == CODE where
  F  : Join(Field, CharacteristicZero, RetractableTo Fraction Integer)
  UP : UnivariatePolynomialCategory F
  L  : LinearOrdinaryDifferentialOperatorCategory UP
  LQ : LinearOrdinaryDifferentialOperatorCategory Fraction UP

  N   ==> NonNegativeInteger
  Z   ==> Integer
  RF  ==> Fraction UP
  UP2 ==> SparseUnivariatePolynomial UP
  REC ==> Record(center:UP, equation:UP)

  SIG ==> with

    denomLODE : (L, RF) -> Union(UP, "failed")
      ++ denomLODE(op, g) returns a polynomial d such that
      ++ any rational solution of \spad{op y = g}
      ++ is of the form \spad{p/d} for some polynomial p, and
      ++ "failed", if the equation has no rational solution.

    denomLODE : (L, List RF) -> UP
      ++ denomLODE(op, [g1,...,gm]) returns a polynomial
      ++ d such that any rational solution of \spad{op y = c1 g1 + ... + cm gm}
      ++ is of the form \spad{p/d} for some polynomial p.

    indicialEquations : L -> List REC
      ++ indicialEquations op returns \spad{[[d1,e1],...,[dq,eq]]} where
      ++ the \spad{d_i}'s are the affine singularities of \spad{op},
      ++ and the \spad{e_i}'s are the indicial equations at each \spad{d_i}.

    indicialEquations : (L, UP) -> List REC
      ++ indicialEquations(op, p) returns \spad{[[d1,e1],...,[dq,eq]]} where
      ++ the \spad{d_i}'s are the affine singularities of \spad{op}
      ++ above the roots of \spad{p},
      ++ and the \spad{e_i}'s are the indicial equations at each \spad{d_i}.

    indicialEquation : (L, F) -> UP
      ++ indicialEquation(op, a) returns the indicial equation of \spad{op}
      ++ at \spad{a}.

    indicialEquations : LQ -> List REC
      ++ indicialEquations op returns \spad{[[d1,e1],...,[dq,eq]]} where
      ++ the \spad{d_i}'s are the affine singularities of \spad{op},
      ++ and the \spad{e_i}'s are the indicial equations at each \spad{d_i}.

    indicialEquations : (LQ, UP) -> List REC
      ++ indicialEquations(op, p) returns \spad{[[d1,e1],...,[dq,eq]]} where
      ++ the \spad{d_i}'s are the affine singularities of \spad{op}
      ++ above the roots of \spad{p},
      ++ and the \spad{e_i}'s are the indicial equations at each \spad{d_i}.

    indicialEquation : (LQ, F) -> UP
      ++ indicialEquation(op, a) returns the indicial equation of \spad{op}
      ++ at \spad{a}.

    splitDenominator : (LQ, List RF) -> Record(eq:L, rh:List RF)
      ++ splitDenominator(op, [g1,...,gm]) returns \spad{op0, [h1,...,hm]}
      ++ such that the equations \spad{op y = c1 g1 + ... + cm gm} and
      ++ \spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.

  CODE ==> add

    import BoundIntegerRoots(F, UP)
    import BalancedFactorisation(F, UP)
    import InnerCommonDenominator(UP, RF, List UP, List RF)
    import UnivariatePolynomialCategoryFunctions2(F, UP, UP, UP2)

    tau          : (UP, UP, UP, N) -> UP
    NPbound      : (UP, L, UP) -> N
    hdenom       : (L, UP, UP) -> UP
    denom0       : (Z, L, UP, UP, UP) -> UP
    indicialEq   : (UP, List N, List UP) -> UP
    separateZeros: (UP, UP) -> UP
    UPfact       : N -> UP
    UP2UP2       : UP -> UP2
    indeq        : (UP, L) -> UP
    NPmulambda   : (UP, L) -> Record(mu:Z, lambda:List N, func:List UP)

    diff := D()$L

    UP2UP2 p                    == map((f1:F):UP +->f1::UP, p)

    indicialEquations(op:L)     == indicialEquations(op, leadingCoefficient op)

    indicialEquation(op:L, a:F) == indeq(monomial(1, 1) - a::UP, op)

    splitDenominator(op, lg) ==
      cd := splitDenominator coefficients op
      f  := cd.den / gcd(cd.num)
      l:L := 0
      while op ^= 0 repeat
          l  := l + monomial(retract(f * leadingCoefficient op), degree op)
          op := reductum op
      [l, [f * g for g in lg]]

    tau(p, pp, q, n) ==
      ((pp ** n) * ((q exquo (p ** order(q, p)))::UP)) rem p

    indicialEquations(op:LQ) ==
      indicialEquations(splitDenominator(op, empty()).eq)

    indicialEquations(op:LQ, p:UP) ==
      indicialEquations(splitDenominator(op, empty()).eq, p)

    indicialEquation(op:LQ, a:F) ==
      indeq(monomial(1, 1) - a::UP, splitDenominator(op, empty()).eq)

    -- returns z(z-1)...(z-(n-1))
    UPfact n ==
      zero? n => 1
      z := monomial(1, 1)$UP
      */[z - i::F::UP for i in 0..(n-1)::N]

    indicialEq(c, lamb, lf) ==
      cp := diff c
      cc := UP2UP2 c
      s:UP2 := 0
      for i in lamb for f in lf repeat
        s := s + (UPfact i) * UP2UP2 tau(c, cp, f, i)
      primitivePart resultant(cc, s)

    NPmulambda(c, l) ==
      lamb:List(N) := [d := degree l]
      lf:List(UP) := [a := leadingCoefficient l]
      mup := d::Z - order(a, c)
      while (l := reductum l) ^= 0 repeat
          a := leadingCoefficient l
          if (m := (d := degree l)::Z - order(a, c)) > mup then
              mup := m
              lamb := [d]
              lf := [a]
          else if (m = mup) then
              lamb := concat(d, lamb)
              lf := concat(a, lf)
      [mup, lamb, lf]

    -- e = 0 means homogeneous equation
    NPbound(c, l, e) ==
      rec := NPmulambda(c, l)
      n := max(0, - integerBound indicialEq(c, rec.lambda, rec.func))
      zero? e => n::N
      max(n, order(e, c)::Z - rec.mu)::N

    hdenom(l, d, e) ==
      */[dd.factor ** NPbound(dd.factor, l, e)
                    for dd in factors balancedFactorisation(d, coefficients l)]

    denom0(n, l, d, e, h) ==
      hdenom(l, d, e) * */[hh.factor ** max(0, order(e, hh.factor) - n)::N
                                 for hh in factors balancedFactorisation(h, e)]

    -- returns a polynomials whose zeros are the zeros of e which are not
    -- zeros of d
    separateZeros(d, e) ==
      ((g := squareFreePart e) exquo gcd(g, squareFreePart d))::UP

    indeq(c, l) ==
      rec := NPmulambda(c, l)
      indicialEq(c, rec.lambda, rec.func)

    indicialEquations(op:L, p:UP) ==
      [[dd.factor, indeq(dd.factor, op)]
                   for dd in factors balancedFactorisation(p, coefficients op)]

    -- cannot return "failed" in the homogeneous case
    denomLODE(l:L, g:RF) ==
      d := leadingCoefficient l
      zero? g => hdenom(l, d, 0)
      h := separateZeros(d, e := denom g)
      n := degree l
      (e exquo (h**(n + 1))) case "failed" => "failed"
      denom0(n, l, d, e, h)

    denomLODE(l:L, lg:List RF) ==
      empty? lg => denomLODE(l, 0)::UP
      d := leadingCoefficient l
      h := separateZeros(d, e := "lcm"/[denom g for g in lg])
      denom0(degree l, l, d, e, h)