This file is indexed.

/usr/share/axiom-20170501/src/algebra/ODERAT.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
)abbrev package ODERAT RationalLODE
++ Author: Manuel Bronstein
++ Date Created: 13 March 1991
++ Date Last Updated: 13 April 1994
++ References:
++ Bron92 Linear Ordinary Differential Equations: Breaking Through the 
++        Order 2 Barrier
++ Description:
++ \spad{RationalLODE} provides functions for in-field solutions of linear
++ ordinary differential equations, in the rational case.

RationalLODE(F, UP) : SIG == CODE where
  F  : Join(Field, CharacteristicZero, RetractableTo Integer,
                                       RetractableTo Fraction Integer)
  UP : UnivariatePolynomialCategory F

  N   ==> NonNegativeInteger
  Z   ==> Integer
  RF  ==> Fraction UP
  U   ==> Union(RF, "failed")
  V   ==> Vector F
  M   ==> Matrix F
  LODO ==> LinearOrdinaryDifferentialOperator1 RF
  LODO2==> LinearOrdinaryDifferentialOperator2(UP, RF)

  SIG ==> with

    ratDsolve : (LODO, RF) -> Record(particular: U, basis: List RF)
      ++ ratDsolve(op, g) returns \spad{["failed", []]} if the equation
      ++ \spad{op y = g} has no rational solution. Otherwise, it returns
      ++ \spad{[f, [y1,...,ym]]} where f is a particular rational solution
      ++ and the yi's form a basis for the rational solutions of the
      ++ homogeneous equation.

    ratDsolve : (LODO, List RF) -> Record(basis:List RF, mat:Matrix F)
      ++ ratDsolve(op, [g1,...,gm]) returns \spad{[[h1,...,hq], M]} such
      ++ that any rational solution of \spad{op y = c1 g1 + ... + cm gm}
      ++ is of the form \spad{d1 h1 + ... + dq hq} where
      ++ \spad{M [d1,...,dq,c1,...,cm] = 0}.

    ratDsolve : (LODO2, RF) -> Record(particular: U, basis: List RF)
      ++ ratDsolve(op, g) returns \spad{["failed", []]} if the equation
      ++ \spad{op y = g} has no rational solution. Otherwise, it returns
      ++ \spad{[f, [y1,...,ym]]} where f is a particular rational solution
      ++ and the yi's form a basis for the rational solutions of the
      ++ homogeneous equation.

    ratDsolve : (LODO2, List RF) -> Record(basis:List RF, mat:Matrix F)
      ++ ratDsolve(op, [g1,...,gm]) returns \spad{[[h1,...,hq], M]} such
      ++ that any rational solution of \spad{op y = c1 g1 + ... + cm gm}
      ++ is of the form \spad{d1 h1 + ... + dq hq} where
      ++ \spad{M [d1,...,dq,c1,...,cm] = 0}.

    indicialEquationAtInfinity : LODO -> UP
      ++ indicialEquationAtInfinity op returns the indicial equation of
      ++ \spad{op} at infinity.

    indicialEquationAtInfinity : LODO2 -> UP
      ++ indicialEquationAtInfinity op returns the indicial equation of
      ++ \spad{op} at infinity.

  CODE ==> add

    import BoundIntegerRoots(F, UP)
    import RationalIntegration(F, UP)
    import PrimitiveRatDE(F, UP, LODO2, LODO)
    import LinearSystemMatrixPackage(F, V, V, M)
    import InnerCommonDenominator(UP, RF, List UP, List RF)

    nzero?             : V -> Boolean
    evenodd            : N -> F
    UPfact             : N -> UP
    infOrder           : RF -> Z
    infTau             : (UP, N) -> F
    infBound           : (LODO2, List RF) -> N
    regularPoint       : (LODO2, List RF) -> Z
    infIndicialEquation: (List N, List UP) -> UP
    makeDot            : (Vector F, List RF) -> RF
    unitlist           : (N, N) -> List F
    infMuLambda: LODO2 -> Record(mu:Z, lambda:List N, func:List UP)
    ratDsolve0: (LODO2, RF) -> Record(particular: U, basis: List RF)
    ratDsolve1: (LODO2, List RF) -> Record(basis:List RF, mat:Matrix F)
    candidates: (LODO2,List RF,UP) -> Record(basis:List RF,particular:List RF)

    dummy := new()$Symbol

    infOrder f == (degree denom f) - (degree numer f)

    evenodd n  == (even? n => 1; -1)

    ratDsolve1(op, lg) ==
      d := denomLODE(op, lg)
      rec := candidates(op, lg, d)
      l := concat([op q for q in rec.basis],
                  [op(rec.particular.i) - lg.i for i in 1..#(rec.particular)])
      sys1 := reducedSystem(matrix [l])@Matrix(UP)
      [rec.basis, reducedSystem sys1]

    ratDsolve0(op, g) ==
      zero? degree op => [inv(leadingCoefficient(op)::RF) * g, empty()]
      minimumDegree op > 0 =>
        sol := ratDsolve0(monicRightDivide(op, monomial(1, 1)).quotient, g)
        b:List(RF) := [1]
        for f in sol.basis repeat
          if (uu := infieldint f) case RF then b := concat(uu::RF, b)
        sol.particular case "failed" => ["failed", b]
        [infieldint(sol.particular::RF), b]
      (u := denomLODE(op, g)) case "failed" => ["failed", empty()]
      rec := candidates(op, [g], u::UP)
      l := lb := lsol := empty()$List(RF)
      for q in rec.basis repeat
          if zero?(opq := op q) then lsol := concat(q, lsol)
          else (l := concat(opq, l); lb := concat(q, lb))
      h:RF := (zero? g => 0; first(rec.particular))
      empty? l =>
          zero? g => [0, lsol]
          [(g = op h => h; "failed"), lsol]
      m:M
      v:V
      if zero? g then
          m := reducedSystem(reducedSystem(matrix [l])@Matrix(UP))@M
          v := new(ncols m, 0)$V
      else
          sys1 := reducedSystem(matrix [l], vector [g - op h]
                               )@Record(mat: Matrix UP, vec: Vector UP)
          sys2 := reducedSystem(sys1.mat, sys1.vec)@Record(mat:M, vec:V)
          m := sys2.mat
          v := sys2.vec
      sol := solve(m, v)
      part:U :=
        zero? g => 0
        sol.particular case "failed" => "failed"
        makeDot(sol.particular::V, lb) + first(rec.particular)
      [part,
       concat_!(lsol, [makeDot(v, lb) for v in sol.basis | nzero? v])]

    indicialEquationAtInfinity(op:LODO2) ==
      rec := infMuLambda op
      infIndicialEquation(rec.lambda, rec.func)

    indicialEquationAtInfinity(op:LODO) ==
      rec := splitDenominator(op, empty())
      indicialEquationAtInfinity(rec.eq)

    regularPoint(l, lg) ==
      a := leadingCoefficient(l) * commonDenominator lg
      coefficient(a, 0) ^= 0 => 0
      for i in 1.. repeat
        a(j := i::F) ^= 0 => return i
        a(-j) ^= 0 => return(-i)

    unitlist(i, q) ==
      v := new(q, 0)$Vector(F)
      v.i := 1
      parts v

    candidates(op, lg, d) ==
      n := degree d + infBound(op, lg)
      m := regularPoint(op, lg)
      uts := UnivariateTaylorSeries(F, dummy, m::F)
      tools := UTSodetools(F, UP, LODO2, uts)
      solver := UnivariateTaylorSeriesODESolver(F, uts)
      dd := UP2UTS(d)$tools
      f := LODO2FUN(op)$tools
      q := degree op
      e := unitlist(1, q)
      hom := [UTS2UP(dd * ode(f, unitlist(i, q))$solver, n)$tools /$RF d
                   for i in 1..q]$List(RF)
      a1 := inv(leadingCoefficient(op)::RF)
      part := 
       [UTS2UP(dd * 
         ode((l1:List(uts)):uts +-> 
              RF2UTS(a1 * g)$tools + f l1, e)$solver, n)$tools
                /$RF d for g in lg | g ^= 0]$List(RF)
      [hom, part]

    nzero? v ==
      for i in minIndex v .. maxIndex v repeat
        not zero? qelt(v, i) => return true
      false

    -- returns z(z+1)...(z+(n-1))
    UPfact n ==
      zero? n => 1
      z := monomial(1, 1)$UP
      */[z + i::F::UP for i in 0..(n-1)::N]

    infMuLambda l ==
      lamb:List(N) := [d := degree l]
      lf:List(UP) := [a := leadingCoefficient l]
      mup := degree(a)::Z - d
      while (l := reductum l) ^= 0 repeat
          a := leadingCoefficient l
          if (m := degree(a)::Z - (d := degree l)) > mup then
            mup := m
            lamb := [d]
            lf := [a]
          else if (m = mup) then
            lamb := concat(d, lamb)
            lf := concat(a, lf)
      [mup, lamb, lf]

    infIndicialEquation(lambda, lf) ==
      ans:UP := 0
      for i in lambda for f in lf repeat
        ans := ans + evenodd i * leadingCoefficient f * UPfact i
      ans

    infBound(l, lg) ==
      rec := infMuLambda l
      n := min(- degree(l)::Z - 1,
               integerBound infIndicialEquation(rec.lambda, rec.func))
      while not(empty? lg) and zero? first lg repeat lg := rest lg
      empty? lg => (-n)::N
      m := infOrder first lg
      for g in rest lg repeat
        if not(zero? g) and (mm := infOrder g) < m then m := mm
      (-min(n, rec.mu - degree(leadingCoefficient l)::Z + m))::N

    makeDot(v, bas) ==
      ans:RF := 0
      for i in 1.. for b in bas repeat ans := ans + v.i::UP * b
      ans

    ratDsolve(op:LODO, g:RF) ==
      rec := splitDenominator(op, [g])
      ratDsolve0(rec.eq, first(rec.rh))

    ratDsolve(op:LODO, lg:List RF) ==
      rec := splitDenominator(op, lg)
      ratDsolve1(rec.eq, rec.rh)

    ratDsolve(op:LODO2, g:RF) ==
      unit?(c := content op) => ratDsolve0(op, g)
      ratDsolve0((op exquo c)::LODO2, inv(c::RF) * g)

    ratDsolve(op:LODO2, lg:List RF) ==
      unit?(c := content op) => ratDsolve1(op, lg)
      ratDsolve1((op exquo c)::LODO2, [inv(c::RF) * g for g in lg])