This file is indexed.

/usr/share/axiom-20170501/src/algebra/ODERTRIC.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
)abbrev package ODERTRIC RationalRicDE
++ Author: Manuel Bronstein
++ Date Created: 22 October 1991
++ Date Last Updated: 11 April 1994
++ Description: 
++ In-field solution of Riccati equations, rational case.

RationalRicDE(F, UP) : SIG == CODE where
  F  : Join(Field, CharacteristicZero, RetractableTo Integer,
                                       RetractableTo Fraction Integer)
  UP : UnivariatePolynomialCategory F

  N   ==> NonNegativeInteger
  Z   ==> Integer
  SY  ==> Symbol
  P   ==> Polynomial F
  RF  ==> Fraction P
  EQ  ==> Equation RF
  QF  ==> Fraction UP
  UP2 ==> SparseUnivariatePolynomial UP
  SUP ==> SparseUnivariatePolynomial P
  REC ==> Record(poly:SUP, vars:List SY)
  SOL ==> Record(var:List SY, val:List F)
  POL ==> Record(poly:UP, eq:L)
  FRC ==> Record(frac:QF, eq:L)
  CNT ==> Record(constant:F, eq:L)
  UTS ==> UnivariateTaylorSeries(F, dummy, 0)
  UPS ==> SparseUnivariatePolynomial UTS
  L   ==> LinearOrdinaryDifferentialOperator2(UP, QF)
  LQ  ==> LinearOrdinaryDifferentialOperator1 QF

  SIG ==> with

    ricDsolve : (LQ, UP -> List F) -> List QF
      ++ ricDsolve(op, zeros) returns the rational solutions of the associated
      ++ Riccati equation of \spad{op y = 0}.
      ++ \spad{zeros} is a zero finder in \spad{UP}.

    ricDsolve : (LQ, UP -> List F, UP -> Factored UP) -> List QF
      ++ ricDsolve(op, zeros, ezfactor) returns the rational
      ++ solutions of the associated Riccati equation of \spad{op y = 0}.
      ++ \spad{zeros} is a zero finder in \spad{UP}.
      ++ Argument \spad{ezfactor} is a factorisation in \spad{UP},
      ++ not necessarily into irreducibles.

    ricDsolve : (L, UP -> List F) -> List QF
      ++ ricDsolve(op, zeros) returns the rational solutions of the associated
      ++ Riccati equation of \spad{op y = 0}.
      ++ \spad{zeros} is a zero finder in \spad{UP}.

    ricDsolve : (L, UP -> List F, UP -> Factored UP) -> List QF
      ++ ricDsolve(op, zeros, ezfactor) returns the rational
      ++ solutions of the associated Riccati equation of \spad{op y = 0}.
      ++ \spad{zeros} is a zero finder in \spad{UP}.
      ++ Argument \spad{ezfactor} is a factorisation in \spad{UP},
      ++ not necessarily into irreducibles.

    singRicDE : (L, UP -> Factored UP) -> List FRC
      ++ singRicDE(op, ezfactor) returns \spad{[[f1,L1], [f2,L2],..., [fk,Lk]]}
      ++ such that the singular ++ part of any rational solution of the
      ++ associated Riccati equation of \spad{op y = 0} must be one of the fi's
      ++ (up to the constant coefficient), in which case the equation for
      ++ \spad{z = y e^{-int ai}} is \spad{Li z = 0}.
      ++ Argument \spad{ezfactor} is a factorisation in \spad{UP},
      ++ not necessarily into irreducibles.

    polyRicDE : (L, UP -> List F) -> List POL
      ++ polyRicDE(op, zeros) returns \spad{[[p1,L1], [p2,L2], ... , [pk,Lk]]}
      ++ such that the polynomial part of any rational solution of the
      ++ associated Riccati equation of \spad{op y = 0} must be one of the pi's
      ++ (up to the constant coefficient), in which case the equation for
      ++ \spad{z = y e^{-int p}} is \spad{Li z = 0}.
      ++ \spad{zeros} is a zero finder in \spad{UP}.

    if F has AlgebraicallyClosedField then

      ricDsolve : LQ -> List QF
        ++ ricDsolve(op) returns the rational solutions of the associated
        ++ Riccati equation of \spad{op y = 0}.

      ricDsolve : (LQ, UP -> Factored UP) -> List QF
        ++ ricDsolve(op, ezfactor) returns the rational solutions of the
        ++ associated Riccati equation of \spad{op y = 0}.
        ++ Argument \spad{ezfactor} is a factorisation in \spad{UP},
        ++ not necessarily into irreducibles.

      ricDsolve : L -> List QF
        ++ ricDsolve(op) returns the rational solutions of the associated
        ++ Riccati equation of \spad{op y = 0}.

      ricDsolve : (L, UP -> Factored UP) -> List QF
        ++ ricDsolve(op, ezfactor) returns the rational solutions of the
        ++ associated Riccati equation of \spad{op y = 0}.
        ++ Argument \spad{ezfactor} is a factorisation in \spad{UP},
        ++ not necessarily into irreducibles.

  CODE ==> add

    import RatODETools(P, SUP)
    import RationalLODE(F, UP)
    import NonLinearSolvePackage F
    import PrimitiveRatDE(F, UP, L, LQ)
    import PrimitiveRatRicDE(F, UP, L, LQ)

    FifCan           : RF -> Union(F, "failed")
    UP2SUP           : UP -> SUP
    innersol         : (List UP, Boolean) -> List QF
    mapeval          : (SUP, List SY, List F) -> UP
    ratsol           : List List EQ -> List SOL
    ratsln           : List EQ -> Union(SOL, "failed")
    solveModulo      : (UP, UP2) -> List UP
    logDerOnly       : L -> List QF
    nonSingSolve     : (N, L, UP -> List F) -> List QF
    constantRic      : (UP, UP -> List F) -> List F
    nopoly           : (N, UP, L, UP -> List F) -> List QF
    reverseUP        : UP -> UTS
    reverseUTS       : (UTS, N) -> UP
    newtonSolution   : (L, F, N, UP -> List F) -> UP
    newtonSolve      : (UPS, F, N) -> Union(UTS, "failed")
    genericPolynomial: (SY, Z) -> Record(poly:SUP, vars:List SY)
      -- genericPolynomial(s, n) returns
      -- \spad{[[s0 + s1 X +...+ sn X^n],[s0,...,sn]]}.

    dummy := new()$SY

    UP2SUP p == map(z +-> z::P,p)
                           $UnivariatePolynomialCategoryFunctions2(F,UP,P,SUP)

    logDerOnly l == [differentiate(s) / s for s in ratDsolve(l, 0).basis]

    ricDsolve(l:LQ, zeros:UP -> List F) == ricDsolve(l, zeros, squareFree)

    ricDsolve(l:L,  zeros:UP -> List F) == ricDsolve(l, zeros, squareFree)

    singRicDE(l, ezfactor)              == singRicDE(l, solveModulo, ezfactor)

    ricDsolve(l:LQ, zeros:UP -> List F, ezfactor:UP -> Factored UP) ==
      ricDsolve(splitDenominator(l, empty()).eq, zeros, ezfactor)

    mapeval(p, ls, lv) ==
      map(z +-> ground eval(z, ls, lv),p)
                        $UnivariatePolynomialCategoryFunctions2(P, SUP, F, UP)

    FifCan f ==
      ((n := retractIfCan(numer f))@Union(F, "failed") case F) and
        ((d := retractIfCan(denom f))@Union(F, "failed") case F) =>
           (n::F) / (d::F)
      "failed"

    -- returns [0, []] if n < 0
    genericPolynomial(s, n) ==
      ans:SUP := 0
      l:List(SY) := empty()
      for i in 0..n repeat
        ans := ans + monomial((sy := new s)::P, i::N)
        l := concat(sy, l)
      [ans, reverse_! l]

    ratsln l ==
      ls:List(SY) := empty()
      lv:List(F) := empty()
      for eq in l repeat
        ((u := FifCan rhs eq) case "failed") or
          ((v := retractIfCan(lhs eq)@Union(SY, "failed")) case "failed")
             => return "failed"
        lv := concat(u::F, lv)
        ls := concat(v::SY, ls)
      [ls, lv]

    ratsol l ==
      ans:List(SOL) := empty()
      for sol in l repeat
        if ((u := ratsln sol) case SOL) then ans := concat(u::SOL, ans)
      ans

    -- returns [] if the solutions of l have no polynomial component
    polyRicDE(l, zeros) ==
      ans:List(POL) := [[0, l]]
      empty?(lc := leadingCoefficientRicDE l) => ans
      rec := first lc                            -- one with highest degree
      for a in zeros(rec.eq) | a ^= 0 repeat
        if (p := newtonSolution(l, a, rec.deg, zeros)) ^= 0 then
            ans := concat([p, changeVar(l, p)], ans)
      ans

    -- reverseUP(a_0 + a_1 x + ... + an x^n) = a_n + ... + a_0 x^n
    reverseUP p ==
      ans:UTS := 0
      n := degree(p)::Z
      while p ^= 0 repeat
        ans := ans + monomial(leadingCoefficient p, (n - degree p)::N)
        p   := reductum p
      ans

    -- reverseUTS(a_0 + a_1 x + ..., n) = a_n + ... + a_0 x^n
    reverseUTS(s, n) ==
      +/[monomial(coefficient(s, i), (n - i)::N)$UP for i in 0..n]

    -- returns potential polynomial solution p with leading coefficient a*?**n
    newtonSolution(l, a, n, zeros) ==
      i:N
      m:Z := 0
      aeq:UPS := 0
      op := l
      while op ^= 0 repeat
        mu := degree(op) * n + degree leadingCoefficient op
        op := reductum op
        if mu > m then m := mu
      while l ^= 0 repeat
        c := leadingCoefficient l
        d := degree l
        s:UTS := monomial(1, (m - d * n - degree c)::N)$UTS * reverseUP c
        aeq := aeq + monomial(s, d)
        l := reductum l
      (u := newtonSolve(aeq, a, n)) case UTS => reverseUTS(u::UTS, n)
      -- newton lifting failed, so revert to traditional method
      atn := monomial(a, n)$UP
      neq := changeVar(l, atn)
      sols := 
        [sol.poly for sol in polyRicDE(neq, zeros) | degree(sol.poly) < n]
      empty? sols => atn
      atn + first sols

    -- solves the algebraic equation eq for y, returns a solution of 
    -- degree n with initial term a
    -- uses naive newton approximation for now
    -- an example where this fails is   y^2 + 2 x y + 1 + x^2 = 0
    -- which arises from the differential operator D^2 + 2 x D + 1 + x^2
    newtonSolve(eq, a, n) ==
      deq := differentiate eq
      sol := a::UTS
      for i in 1..n repeat
        (xquo := eq(sol) exquo deq(sol)) case "failed" => return "failed"
        sol := truncate(sol - xquo::UTS, i)
      sol

    -- there could be the same solutions coming in different ways, so we
    -- stop when the number of solutions reaches the order of the equation
    ricDsolve(l:L, zeros:UP -> List F, ezfactor:UP -> Factored UP) ==
      n := degree l
      ans:List(QF) := empty()
      for rec in singRicDE(l, ezfactor) repeat
        ans := removeDuplicates_! concat_!(ans,
                        [rec.frac + f for f in nonSingSolve(n, rec.eq, zeros)])
        #ans = n => return ans
      ans

    -- there could be the same solutions coming in different ways, so we
    -- stop when the number of solutions reaches the order of the equation
    nonSingSolve(n, l, zeros) ==
      ans:List(QF) := empty()
      for rec in polyRicDE(l, zeros) repeat
        ans:= removeDuplicates_! concat_!(ans, nopoly(n,rec.poly,rec.eq,zeros))
        #ans = n => return ans
      ans

    constantRic(p, zeros) ==
      zero? degree p => empty()
      zeros squareFreePart p

    -- there could be the same solutions coming in different ways, so we
    -- stop when the number of solutions reaches the order of the equation
    nopoly(n, p, l, zeros) ==
      ans:List(QF) := empty()
      for rec in constantCoefficientRicDE(l,z+->constantRic(z, zeros)) repeat
        ans := removeDuplicates_! concat_!(ans,
                  [(rec.constant::UP + p)::QF + f for f in logDerOnly(rec.eq)])
        #ans = n => return ans
      ans

    -- returns [p1,...,pn] s.t. h(x,pi(x)) = 0 mod c(x)
    solveModulo(c, h) ==
      rec := genericPolynomial(dummy, degree(c)::Z - 1)
      unk:SUP := 0
      while not zero? h repeat
        unk := unk + UP2SUP(leadingCoefficient h) * (rec.poly ** degree h)
        h   := reductum h
      sol := ratsol solve(coefficients(monicDivide(unk,UP2SUP c).remainder),
                          rec.vars)
      [mapeval(rec.poly, s.var, s.val) for s in sol]

    if F has AlgebraicallyClosedField then

      zro1: UP -> List F
      zro : (UP, UP -> Factored UP) -> List F

      ricDsolve(l:L)  == ricDsolve(l, squareFree)

      ricDsolve(l:LQ) == ricDsolve(l, squareFree)

      ricDsolve(l:L, ezfactor:UP -> Factored UP) ==
        ricDsolve(l, z +-> zro(z, ezfactor), ezfactor)

      ricDsolve(l:LQ, ezfactor:UP -> Factored UP) ==
        ricDsolve(l, z +-> zro(z, ezfactor), ezfactor)

      zro(p, ezfactor) ==
        concat [zro1(r.factor) for r in factors ezfactor p]

      zro1 p ==
        [zeroOf(map((z:F):F +-> z, p)
          $UnivariatePolynomialCategoryFunctions2(F, UP, F, 
              SparseUnivariatePolynomial F))]