This file is indexed.

/usr/share/axiom-20170501/src/algebra/ODESYS.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
)abbrev package ODESYS SystemODESolver
++ Author: Manuel Bronstein
++ Date Created: 11 June 1991
++ Date Last Updated: 13 April 1994
++ Description: 
++ SystemODESolver provides tools for triangulating
++ and solving some systems of linear ordinary differential equations.

SystemODESolver(F, LO) : SIG == CODE where
  F : Field
  LO : LinearOrdinaryDifferentialOperatorCategory F

  N   ==> NonNegativeInteger
  Z   ==> Integer
  MF  ==> Matrix F
  M   ==> Matrix LO
  V   ==> Vector F
  UF  ==> Union(F, "failed")
  UV  ==> Union(V, "failed")
  REC ==> Record(mat: M, vec: V)
  FSL ==> Record(particular: UF, basis: List F)
  VSL ==> Record(particular: UV, basis: List V)
  SOL ==> Record(particular: F, basis: List F)
  USL ==> Union(SOL, "failed")
  ER  ==> Record(C: MF, g: V, eq: LO, rh: F)

  SIG ==> with

    triangulate : (MF, V) -> Record(A:MF, eqs: List ER)
      ++ triangulate(M,v) returns
      ++ \spad{A,[[C_1,g_1,L_1,h_1],...,[C_k,g_k,L_k,h_k]]}
      ++ such that under the change of variable \spad{y = A z}, the first
      ++ order linear system \spad{D y = M y + v} is uncoupled as
      ++ \spad{D z_i = C_i z_i + g_i} and each \spad{C_i} is a companion
      ++ matrix corresponding to the scalar equation \spad{L_i z_j = h_i}.

    triangulate : (M, V) -> REC
      ++ triangulate(m, v) returns \spad{[m_0, v_0]} such that \spad{m_0}
      ++ is upper triangular and the system \spad{m_0 x = v_0} is equivalent
      ++ to \spad{m x = v}.

    solve : (MF,V,(LO,F)->USL) -> Union(Record(particular:V, basis:MF),"failed")
      ++ solve(m, v, solve) returns \spad{[[v_1,...,v_m], v_p]} such that
      ++ the solutions in \spad{F} of the system \spad{D x = m x + v} are
      ++ \spad{v_p + c_1 v_1 + ... + c_m v_m} where the \spad{c_i's} are
      ++ constants, and the \spad{v_i's} form a basis for the solutions of
      ++ \spad{D x = m x}.
      ++ Argument \spad{solve} is a function for solving a single linear
      ++ ordinary differential equation in \spad{F}.

    solveInField : (M, V, (LO, F) -> FSL) -> VSL
      ++ solveInField(m, v, solve) returns \spad{[[v_1,...,v_m], v_p]} such
      ++ that the solutions in \spad{F} of the system \spad{m x = v} are
      ++ \spad{v_p + c_1 v_1 + ... + c_m v_m} where the \spad{c_i's} are
      ++ constants, and the \spad{v_i's} form a basis for the solutions of
      ++ \spad{m x = 0}.
      ++ Argument \spad{solve} is a function for solving a single linear
      ++ ordinary differential equation in \spad{F}.

  CODE ==> add

    import PseudoLinearNormalForm F

    applyLodo   : (M, Z, V, N) -> F
    applyLodo0  : (M, Z, Matrix F, Z, N) -> F
    backsolve   : (M, V, (LO, F) -> FSL) -> VSL
    firstnonzero: (M, Z) -> Z
    FSL2USL     : FSL -> USL
    M2F         : M -> Union(MF, "failed")

    diff := D()$LO

    solve(mm, v, solve) ==
      rec  := triangulate(mm, v)
      sols:List(SOL) := empty()
      for e in rec.eqs repeat
          (u := solve(e.eq, e.rh)) case "failed" => return "failed"
          sols := concat(u::SOL, sols)
      n := nrows(rec.A)    -- dimension of original vectorspace
      k:N := 0             -- sum of sizes of visited companionblocks
      i:N := 0             -- number of companionblocks
      m:N := 0             -- number of Solutions
      part:V := new(n, 0)
      -- count first the different solutions
      for sol in sols repeat 
        m := m + count((f1:F):Boolean +-> f1 ^= 0, sol.basis)$List(F)
      SolMatrix:MF := new(n, m, 0)
      m := 0
      for sol in reverse_! sols repeat
          i := i+1
          er := rec.eqs.i
          nn := #(er.g)           -- size of active companionblock
          for s in sol.basis repeat
              solVec:V := new(n, 0)
              -- compute corresponding solution base with recursion (24)
              solVec(k+1) := s
              for l in 2..nn repeat solVec(k+l) := diff solVec(k+l-1)
              m := m+1
              setColumn!(SolMatrix, m, solVec)
          -- compute with (24) the corresponding components of the part. sol.
          part(k+1) := sol.particular
          for l in 2..nn repeat part(k+l) := diff part(k+l-1) - (er.g)(l-1)
          k := k+nn
      -- transform these values back to the original system
      [rec.A * part, rec.A * SolMatrix]

    triangulate(m:MF, v:V) ==
      k:N := 0       -- sum of companion-dimensions
      rat := normalForm(m, 1, (f1:F):F +-> - diff f1)
      l   := companionBlocks(rat.R, rat.Ainv * v)
      ler:List(ER) := empty()
      for er in l repeat
        n := nrows(er.C)         -- dimension of this companion vectorspace
        op:LO := 0               -- compute homogeneous equation
        for j in 0..n-1 repeat op := op + monomial((er.C)(n, j + 1), j)
        op := monomial(1, n) - op
        sum:V := new(n::N, 0)    -- compute inhomogen Vector (25)
        for j in 1..n-1 repeat sum(j+1) := diff(sum j) + (er.g) j
        h0:F := 0                 -- compute inhomogenity (26)
        for j in 1..n repeat h0 := h0 - (er.C)(n, j) * sum j
        h0 := h0 + diff(sum n) + (er.g) n
        ler := concat([er.C, er.g, op, h0], ler)
        k := k + n
      [rat.A, ler]

-- like solveInField, but expects a system already triangularized
    backsolve(m, v, solve) ==
      part:V
      r := maxRowIndex m
      offset := minIndex v - (mr := minRowIndex m)
      while r >= mr and every?(zero?, row(m, r))$Vector(LO) repeat r := r - 1
      r < mr => error "backsolve: system has a 0 matrix"
      (c := firstnonzero(m, r)) ^= maxColIndex m =>
        error "backsolve: undetermined system"
      rec := solve(m(r, c), v(r + offset))
      dim := (r - mr + 1)::N
      if (part? := ((u := rec.particular) case F)) then
        part := new(dim, 0)                           -- particular solution
        part(r + offset) :=  u::F
-- hom is the basis for the homogeneous solutions, each column is a solution
      hom:Matrix(F) := new(dim, #(rec.basis), 0)
      for i in minColIndex hom .. maxColIndex hom for b in rec.basis repeat
        hom(r, i) := b
      n:N := 1                 -- number of equations already solved
      while r > mr repeat
        r := r - 1
        c := c - 1
        firstnonzero(m, r) ^= c => error "backsolve: undetermined system"
        degree(eq := m(r, c)) > 0 => error "backsolve: pivot of order > 0"
        a := leadingCoefficient(eq)::F
        if part? then
           part(r + offset) := (v(r + offset) - applyLodo(m, r, part, n)) / a
        for i in minColIndex hom .. maxColIndex hom repeat
          hom(r, i) := - applyLodo0(m, r, hom, i, n)
        n := n + 1
      bas:List(V) := [column(hom,i) for i in minColIndex hom..maxColIndex hom]
      part? => [part, bas]
      ["failed", bas]

    solveInField(m, v, solve) ==
      ((n := nrows m) = ncols m) and
         ((u := M2F(diagonalMatrix [diff for i in 1..n] - m)) case MF) =>
             (uu := solve(u::MF, v, 
               (l1:LO,f2:F):USL +-> FSL2USL solve(l1, f2))) case "failed" =>
                  ["failed", empty()]
             rc := uu::Record(particular:V, basis:MF)
             [rc.particular, [column(rc.basis, i) for i in 1..ncols(rc.basis)]]
      rec := triangulate(m, v)
      backsolve(rec.mat, rec.vec, solve)

    M2F m ==
        mf:MF := new(nrows m, ncols m, 0)
        for i in minRowIndex m .. maxRowIndex m repeat
            for j in minColIndex m .. maxColIndex m repeat
               (u := retractIfCan(m(i, j))@Union(F, "failed")) case "failed" =>
                     return "failed"
               mf(i, j) := u::F
        mf

    FSL2USL rec ==
        rec.particular case "failed" => "failed"
        [rec.particular::F, rec.basis]

-- returns the index of the first nonzero entry in row r of m
    firstnonzero(m, r) ==
      for c in minColIndex m .. maxColIndex m repeat
        m(r, c) ^= 0 => return c
      error "firstnonzero: zero row"

-- computes +/[m(r, i) v(i) for i ranging over the last n columns of m]
    applyLodo(m, r, v, n) ==
      ans:F := 0
      c := maxColIndex m
      cv := maxIndex v
      for i in 1..n repeat
        ans := ans + m(r, c) (v cv)
        c := c - 1
        cv := cv - 1
      ans

-- computes +/[m(r, i) mm(i, c) for i ranging over the last n columns of m]
    applyLodo0(m, r, mm, c, n) ==
      ans := 0
      rr := maxRowIndex mm
      cc := maxColIndex m
      for i in 1..n repeat
        ans := ans + m(r, cc) mm(rr, c)
        cc := cc - 1
        rr := rr - 1
      ans

    triangulate(m:M, v:V) ==
      x := copy m
      w := copy v
      nrows := maxRowIndex x
      ncols := maxColIndex x
      minr  := i := minRowIndex x
      offset := minIndex w - minr
      for j in minColIndex x .. ncols repeat
        if i > nrows then leave x
        rown := minr - 1
        for k in i .. nrows repeat
          if (x(k, j) ^= 0) and ((rown = minr - 1) or
                              degree x(k,j) < degree x(rown,j)) then rown := k
          rown = minr - 1 => "enuf"
          x := swapRows_!(x, i, rown)
          swap_!(w, i + offset, rown + offset)
        for k in i+1 .. nrows | x(k, j) ^= 0 repeat
          l := rightLcm(x(i,j), x(k,j))
          a := rightQuotient(l, x(i, j))
          b := rightQuotient(l, x(k, j))
          -- l = a x(i,j) = b x(k,j)
          for k1 in j+1 .. ncols repeat
            x(k, k1) :=  a * x(i, k1) - b * x(k, k1)
          x(k, j) := 0
          w(k + offset) := a(w(i + offset)) - b(w(k + offset))
        i := i+1
      [x, w]