This file is indexed.

/usr/share/axiom-20170501/src/algebra/ODR.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
)abbrev domain ODR OrdinaryDifferentialRing
++ Author: Stephen M. Watt
++ Date Created: 1986
++ Date Last Updated: June 3, 1991
++ Description:
++ This constructor produces an ordinary differential ring from
++ a partial differential ring by specifying a variable.

OrdinaryDifferentialRing(Kernels,R,var) : SIG == CODE where
  Kernels : SetCategory
  R : PartialDifferentialRing(Kernels)
  var : Kernels

  SIG ==> Join(BiModule($,$), DifferentialRing) with

    if R has Field then Field

    coerce : R -> $
      ++ coerce(r) views r as a value in the ordinary differential ring.

    coerce : $ -> R
      ++ coerce(p) views p as a valie in the partial differential ring.

  CODE ==> R add

        n: Integer

        Rep := R

        coerce(u:R):$ == u::Rep::$

        coerce(p:$):R == p::Rep::R

        differentiate p       == differentiate(p, var)

        if R has Field then

            p / q     == ((p::R) /$R (q::R))::$

            p ** n    == ((p::R) **$R n)::$

            inv(p)    == (inv(p::R)$R)::$