This file is indexed.

/usr/share/axiom-20170501/src/algebra/OFMONOID.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
)abbrev domain OFMONOID OrderedFreeMonoid
++ Author: Michel Petitot petitot@lifl.fr
++ Date Created: 91
++ Date Last Updated: 7 Juillet 92
++ Fix History: compilation v 2.1 le 13 dec 98
++ Description:
++ The free monoid on a set \spad{S} is the monoid of finite products of
++ the form \spad{reduce(*,[si ** ni])} where the si's are in S, and the ni's
++ are non-negative integers. The multiplication is not commutative.
++ For two elements \spad{x} and \spad{y} the relation \spad{x < y}
++ holds if either \spad{length(x) < length(y)} holds or if these lengths
++ are equal and if \spad{x} is smaller than \spad{y} w.r.t. the 
++ lexicographical ordering induced by \spad{S}.
++ This domain inherits implementation from \spadtype{FreeMonoid}.

OrderedFreeMonoid(S) : SIG == CODE where
  S : OrderedSet

  NNI ==> NonNegativeInteger
  REC ==> Record(gen:S, exp:NNI)
  RESULT ==> Union(Record(lm:Union(%,"failed"),rm:Union(%,"failed")),"failed")
 
  SIG ==> Join(OrderedMonoid, RetractableTo S) with

    "*": (S, %) -> %
      ++ \spad{s*x} returns the product of \spad{x} by \spad{s} on the left.
      ++
      ++X m1:=(x*y*y*z)$OFMONOID(Symbol)
      ++X x*m1

    "*" : (%, S) -> %
      ++ \spad{x*s} returns the product of \spad{x} by \spad{s} on the right.
      ++
      ++X m1:=(y**3)$OFMONOID(Symbol)
      ++X m1*x

    "**" : (S, NNI) -> %
      ++ \spad{s**n} returns the product of \spad{s} by itself \spad{n} times.
      ++
      ++X m1:=(y**3)$OFMONOID(Symbol)

    first : % -> S
      ++ \spad{first(x)} returns the first letter of \spad{x}.
      ++
      ++X m1:=(x*y*y*z)$OFMONOID(Symbol)
      ++X first m1

    rest :  % -> %
      ++ \spad{rest(x)} returns \spad{x} except the first letter.
      ++
      ++X m1:=(x*y*y*z)$OFMONOID(Symbol)
      ++X rest m1

    mirror : % -> %
      ++ \spad{mirror(x)} returns the reversed word of \spad{x}.
      ++
      ++X m1:=(x*y*y*z)$OFMONOID(Symbol)
      ++X mirror m1

    lexico : (%,%) -> Boolean
      ++ \spad{lexico(x,y)} returns \spad{true} 
      ++ iff \spad{x} is smaller than \spad{y}
      ++ w.r.t. the pure lexicographical ordering induced by \spad{S}.
      ++
      ++X m1:=(x*y*y*z)$OFMONOID(Symbol)
      ++X m2:=(x*y)$OFMONOID(Symbol)
      ++X lexico(m1,m2)
      ++X lexico(m2,m1)

    hclf : (%, %) -> %
      ++ \spad{hclf(x, y)} returns the highest common left factor 
      ++ of \spad{x} and \spad{y},
      ++ that is the largest \spad{d} such that \spad{x = d a} 
      ++ and \spad{y = d b}.
      ++
      ++X m1:=(x*y*z)$OFMONOID(Symbol)
      ++X m2:=(x*y)$OFMONOID(Symbol)
      ++X hclf(m1,m2)

    hcrf : (%, %) -> %
      ++ \spad{hcrf(x, y)} returns the highest common right 
      ++ factor of \spad{x} and \spad{y},
      ++ that is the largest \spad{d} such that \spad{x = a d} 
      ++ and \spad{y = b d}.
      ++
      ++X m1:=(x*y*z)$OFMONOID(Symbol)
      ++X m2:=(y*z)$OFMONOID(Symbol)
      ++X hcrf(m1,m2)

    lquo : (%, %) -> Union(%, "failed")
      ++ \spad{lquo(x, y)} returns the exact left quotient of \spad{x}
      ++  by \spad{y} that is \spad{q} such that \spad{x = y * q},
      ++ "failed" if \spad{x} is not of the form \spad{y * q}.
      ++
      ++X m1:=(x*y*y*z)$OFMONOID(Symbol)
      ++X m2:=(x*y)$OFMONOID(Symbol)
      ++X lquo(m1,m2)

    rquo : (%, %) -> Union(%, "failed")
      ++ \spad{rquo(x, y)} returns the exact right quotient of \spad{x} 
      ++ by \spad{y} that is \spad{q} such that \spad{x = q * y},
      ++ "failed" if \spad{x} is not of the form \spad{q * y}.
      ++
      ++X m1:=(q*y^3)$OFMONOID(Symbol)
      ++X m2:=(y^2)$OFMONOID(Symbol)
      ++X lquo(m1,m2)

    lquo : (%, S) -> Union(%, "failed")
      ++ \spad{lquo(x, s)} returns the exact left quotient of \spad{x} 
      ++ by \spad{s}. 
      ++
      ++X m1:=(x*y*y*z)$OFMONOID(Symbol)
      ++X lquo(m1,x)

    rquo : (%, S) -> Union(%, "failed")
      ++ \spad{rquo(x, s)} returns the exact right quotient 
      ++ of \spad{x} by \spad{s}.
      ++
      ++X m1:=(x*y)$OFMONOID(Symbol)
      ++X div(m1,y)

    divide : (%, %) -> RESULT
      ++ \spad{divide(x,y)} returns the left and right exact quotients of
      ++ \spad{x} by \spad{y}, that is \spad{[l,r]} such that \spad{x = l*y*r}.
      ++ "failed" is returned iff \spad{x} is not of the form \spad{l * y * r}.
      ++
      ++X m1:=(x*y*y*z)$OFMONOID(Symbol)
      ++X m2:=(x*y)$OFMONOID(Symbol)
      ++X divide(m1,m2)

    overlap : (%, %) -> Record(lm: %, mm: %, rm: %)
      ++ \spad{overlap(x, y)} returns \spad{[l, m, r]} such that
      ++ \spad{x = l * m} and \spad{y = m * r} hold and such that 
      ++ \spad{l} and \spad{r} have no overlap,
      ++ that is \spad{overlap(l, r) = [l, 1, r]}.
      ++
      ++X m1:=(x*y*y*z)$OFMONOID(Symbol)
      ++X m2:=(x*y)$OFMONOID(Symbol)
      ++X overlap(m1,m2)

    size : % -> NNI
      ++ \spad{size(x)} returns the number of monomials in \spad{x}.
      ++
      ++X m1:=(x*y*y*z)$OFMONOID(Symbol)
      ++X size(m1,2)

    nthExpon : (%, Integer) -> NNI
      ++ \spad{nthExpon(x, n)} returns the exponent of the 
      ++ \spad{n-th} monomial of \spad{x}.
      ++
      ++X m1:=(x*y*y*z)$OFMONOID(Symbol)
      ++X nthExpon(m1,2)

    nthFactor : (%, Integer) -> S
      ++ \spad{nthFactor(x, n)} returns the factor of the \spad{n-th} 
      ++ monomial of \spad{x}.
      ++
      ++X m1:=(x*y*y*z)$OFMONOID(Symbol)
      ++X nthFactor(m1,2)

    factors : % -> List REC
      ++ \spad{factors(a1\^e1,...,an\^en)} returns 
      ++ \spad{[[a1, e1],...,[an, en]]}.
      ++
      ++X m1:=(x*y*y*z)$OFMONOID(Symbol)
      ++X factors m1

    length : % -> NNI
      ++ \spad{length(x)} returns the length of \spad{x}.
      ++
      ++X m1:=(x*y*y*z)$OFMONOID(Symbol)
      ++X length m1

    varList : % -> List S
      ++ \spad{varList(x)} returns the list of variables of \spad{x}.
      ++
      ++X m1:=(x*y*y*z)$OFMONOID(Symbol)
      ++X varList m1

  CODE ==> FreeMonoid(S) add

    Rep := ListMonoidOps(S, NNI, 1)
        
    -- definitions
    lquo(w:%, l:S) == 
      x: List REC := listOfMonoms(w)$Rep
      null x        => "failed"
      fx: REC := first x
      fx.gen ^= l  => "failed"
      fx.exp = 1   => makeMulti rest(x)
      makeMulti [[fx.gen, (fx.exp - 1)::NNI ]$REC, :rest x]
       
    rquo(w:%, l:S) ==
      u:% := reverse w
      (r := lquo (u,l)) case "failed" => "failed"
      reverse_! (r::%)

    divide(left:%,right:%) == 
      a:=lquo(left,right) 
      b:=rquo(left,right)
      [a,b]

    length x == reduce("+" ,[f.exp for f in listOfMonoms x], 0)

    varList x ==
      le: List S := [t.gen for t in listOfMonoms x]
      sort_! removeDuplicates(le)
 
    first w ==
      x: List REC := listOfMonoms w
      null x => error "empty word !!!"
      x.first.gen

    rest w ==
      x: List REC := listOfMonoms w
      null x => error "empty word !!!"
      fx: REC := first x
      fx.exp = 1 => makeMulti rest x
      makeMulti [[fx.gen , (fx.exp - 1)::NNI ]$REC , :rest x]

    lexico(a,b) ==         --  ordre lexicographique
      la := listOfMonoms a
      lb := listOfMonoms b
      while (not null la) and (not null lb) repeat
        la.first.gen > lb.first.gen => return false
        la.first.gen < lb.first.gen => return true
        if la.first.exp = lb.first.exp then
          la:=rest la
          lb:=rest lb
        else if la.first.exp > lb.first.exp then
          la:=concat([la.first.gen,
                 (la.first.exp - lb.first.exp)::NNI], rest lb)
          lb:=rest lb
        else
          lb:=concat([lb.first.gen,
                   (lb.first.exp-la.first.exp)::NNI], rest la)
          la:=rest la
      empty? la and not empty? lb

    a < b ==               --  ordre lexicographique par longueur
      la:NNI := length a; lb:NNI := length b
      la = lb =>  lexico(a,b)
      la < lb 

    mirror x == reverse(x)$Rep