This file is indexed.

/usr/share/axiom-20170501/src/algebra/OMEXPR.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
)abbrev package OMEXPR ExpressionToOpenMath
++ Author: Mike Dewar & Vilya Harvey
++ References:
++ Corl00 According to Abramowitz and Stegun or arccoth needn't be Uncouth
++ Fate01a A Critique of OpenMath and Thoughts on Encoding Mathematics
++ Description: 
++ \spadtype{ExpressionToOpenMath} provides support for
++ converting objects of type \spadtype{Expression} into OpenMath.

ExpressionToOpenMath(R) : SIG == CODE where
  R : Join(OpenMath, OrderedSet, Ring)

  SIG ==> with

    OMwrite : Expression R -> String

    OMwrite : (Expression R, Boolean) -> String

    OMwrite : (OpenMathDevice, Expression R) -> Void

    OMwrite : (OpenMathDevice, Expression R, Boolean) -> Void

  CODE ==> add

    import Expression R
    SymInfo ==> Record(cd:String, name:String)
    import SymInfo
    import Record(key: Symbol, entry: SymInfo)
    import AssociationList(Symbol, SymInfo)
    import OMENC

    ----------------------------
    -- Local translation tables.
    ----------------------------

    nullaryFunctionAList : AssociationList(Symbol, SymInfo) := construct [_
      [pi, ["nums1", "pi"]] ]

    unaryFunctionAList : AssociationList(Symbol, SymInfo) := construct [_
      [exp,  ["transc1", "exp"]],_
      [log,  ["transc1", "ln"]],_
      [sin,  ["transc1", "sin"]],_
      [cos,  ["transc1", "cos"]],_
      [tan,  ["transc1", "tan"]],_
      [cot,  ["transc1", "cot"]],_
      [sec,  ["transc1", "sec"]],_
      [csc,  ["transc1", "csc"]],_
      [asin, ["transc1", "arcsin"]],_
      [acos, ["transc1", "arccos"]],_
      [atan, ["transc1", "arctan"]],_
      [acot, ["transc1", "arccot"]],_
      [asec, ["transc1", "arcsec"]],_
      [acsc, ["transc1", "arccsc"]],_
      [sinh, ["transc1", "sinh"]],_
      [cosh, ["transc1", "cosh"]],_
      [tanh, ["transc1", "tanh"]],_
      [coth, ["transc1", "coth"]],_
      [sech, ["transc1", "sech"]],_
      [csch, ["transc1", "csch"]],_
      [asinh, ["transc1", "arcsinh"]],_
      [acosh, ["transc1", "arccosh"]],_
      [atanh, ["transc1", "arctanh"]],_
      [acoth, ["transc1", "arccoth"]],_
      [asech, ["transc1", "arcsech"]],_
      [acsch, ["transc1", "arccsch"]],_
      [factorial, ["integer1", "factorial"]],_
      [abs, ["arith1", "abs"]] ]

      -- Still need the following unary functions:
      --  digamma
      --  Gamma
      --  airyAi
      --  airyBi
      --  erf
      --  Ei
      --  Si
      --  Ci
      --  li
      --  dilog

      -- Still need the following binary functions:
      --      Gamma(a, x)
      --      Beta(x,y) 
      --      polygamma(k,x)
      --      besselJ(v,x)
      --      besselY(v,x)
      --      besselI(v,x)
      --      besselK(v,x)
      --      permutation(n, m)
      --      summation(x:%, n:Symbol) : as opposed to "definite" sum
      --      product(x:%, n:Symbol)   : ditto

    ------------------------
    -- Forward declarations.
    ------------------------

    outputOMExpr  : (OpenMathDevice, Expression R) -> Void

    -------------------------
    -- Local helper functions
    -------------------------

    outputOMArith1(dev: OpenMathDevice, sym: String, _
                   args: List Expression R): Void ==
      OMputApp(dev)
      OMputSymbol(dev, "arith1", sym)
      for arg in args repeat
        OMwrite(dev, arg, false)
      OMputEndApp(dev)

    outputOMLambda(dev: OpenMathDevice, ex: Expression R, _
                   var: Expression R): Void ==
      OMputBind(dev)
      OMputSymbol(dev, "fns1", "lambda")
      OMputBVar(dev)
      OMwrite(dev, var, false)
      OMputEndBVar(dev)
      OMwrite(dev, ex, false)
      OMputEndBind(dev)

    outputOMInterval(dev: OpenMathDevice, _
                     lo: Expression R, hi: Expression R): Void ==
      OMputApp(dev)
      OMputSymbol(dev, "interval1", "interval")
      OMwrite(dev, lo, false)
      OMwrite(dev, hi, false)
      OMputEndApp(dev)

    outputOMIntInterval(dev:OpenMathDevice, lo:Expression R, hi:Expression R)_
        :Void ==
      OMputApp(dev)
      OMputSymbol(dev, "interval1", "integer__interval")
      OMwrite(dev, lo, false)
      OMwrite(dev, hi, false)
      OMputEndApp(dev)

    outputOMBinomial(dev: OpenMathDevice, args: List Expression R): Void ==
      not #args=2 => error "Wrong number of arguments to binomial"
      OMputApp(dev)
      OMputSymbol(dev, "combinat1", "binomial")
      for arg in args repeat
        OMwrite(dev, arg, false)
      OMputEndApp(dev)

    outputOMPower(dev: OpenMathDevice, args: List Expression R): Void ==
      not #args=2 => error "Wrong number of arguments to power"
      outputOMArith1(dev, "power", args)

    outputOMDefsum(dev: OpenMathDevice, args: List Expression R): Void ==
      #args ^= 5 => error "Unexpected number of arguments to a defsum"
      OMputApp(dev)
      OMputSymbol(dev, "arith1", "sum")
      outputOMIntInterval(dev, args.4, args.5)
      outputOMLambda(dev, eval(args.1, args.2, args.3), args.3)
      OMputEndApp(dev)

    outputOMDefprod(dev: OpenMathDevice, args: List Expression R): Void ==
      #args ^= 5 => error "Unexpected number of arguments to a defprod"
      OMputApp(dev)
      OMputSymbol(dev, "arith1", "product")
      outputOMIntInterval(dev, args.4, args.5)
      outputOMLambda(dev, eval(args.1, args.2, args.3), args.3)
      OMputEndApp(dev)

    outputOMDefint(dev: OpenMathDevice, args: List Expression R): Void ==
      #args ^= 5 => error "Unexpected number of arguments to a defint"
      OMputApp(dev)
      OMputSymbol(dev, "calculus1", "defint")
      outputOMInterval(dev, args.4, args.5)
      outputOMLambda(dev, eval(args.1, args.2, args.3), args.3)
      OMputEndApp(dev)

    outputOMInt(dev: OpenMathDevice, args: List Expression R): Void ==
      #args ^= 3 => error "Unexpected number of arguments to a defint"
      OMputApp(dev)
      OMputSymbol(dev, "calculus1", "int")
      outputOMLambda(dev, eval(args.1, args.2, args.3), args.3)
      OMputEndApp(dev)

    outputOMFunction(dev: OpenMathDevice, op: Symbol, _
                     args: List Expression R): Void ==
      nargs := #args
      zero? nargs =>
        omOp: Union(SymInfo, "failed") := search(op, nullaryFunctionAList)
        omOp case "failed" =>
          error
            concat ["No OpenMath definition for nullary function ",coerce op]
        OMputSymbol(dev, omOp.cd, omOp.name)
      (nargs = 1) =>
        omOp: Union(SymInfo, "failed") := search(op, unaryFunctionAList)
        omOp case "failed" =>
          error
            concat ["No OpenMath definition for unary function ", coerce op]
        OMputApp(dev)
        OMputSymbol(dev, omOp.cd, omOp.name)
        for arg in args repeat
          OMwrite(dev, arg, false)
        OMputEndApp(dev)
      -- Most of the binary operators cannot be handled trivialy like the
      -- unary ones since they have bound variables of one kind or another.
      -- The special functions should be straightforward, but we don't have
      -- a CD for them yet :-)
      op = %defint  => outputOMDefint(dev, args)
      op = integral => outputOMInt(dev, args)
      op = %defsum  => outputOMDefsum(dev, args)
      op = %defprod => outputOMDefprod(dev, args)
      op = %power   => outputOMPower(dev, args)
      op = binomial => outputOMBinomial(dev, args)
      error concat ["No OpenMath definition for function ", string op]
 
    outputOMExpr(dev: OpenMathDevice, ex: Expression R): Void ==
      ground? ex => OMwrite(dev, ground ex, false)
      not((v := retractIfCan(ex)@Union(Symbol,"failed")) case "failed") =>
        OMputVariable(dev, v)
      not((w := isPlus ex) case "failed") => outputOMArith1(dev, "plus", w)
      not((w := isTimes ex) case "failed") => outputOMArith1(dev, "times", w)
      --not((y := isMult ex) case "failed") =>
      --  outputOMArith("times", [OMwrite(y.coef)$Integer,
      --          OMwrite(coerce y.var)])
      -- At the time of writing we don't need both isExpt and isPower
      -- here but they may be relevent when we integrate this stuff into
      -- the main Expression code.  Note that if we don't check that
      -- the exponent is non-trivial we get thrown into an infinite recursion.
      not (((x := isExpt ex) case "failed") or (x.exponent = 1)) =>
        not((s := symbolIfCan(x.var)@Union(Symbol,"failed")) case "failed") =>
          --outputOMPower(dev, [s::Expression(R), (x.exponent)::Expression(R)])
          OMputApp(dev)
          OMputSymbol(dev, "arith1", "power")
          OMputVariable(dev, s)
          OMputInteger(dev, x.exponent)
          OMputEndApp(dev)
        -- TODO: add error handling code here...
      not (((z := isPower ex) case "failed") or (z.exponent = 1)) =>
        outputOMPower(dev, [ z.val, z.exponent::Expression R ])
        --OMputApp(dev)
        --OMputSymbol(dev, "arith1", "power")
        --outputOMExpr(dev, z.val)
        --OMputInteger(dev, z.exponent)
        --OMputEndApp(dev)
      -- Must only be one top-level Kernel by this point
      k : Kernel Expression R := first kernels ex
      outputOMFunction(dev, name operator k, argument k)

    ----------
    -- Exports
    ----------

    OMwrite(ex: Expression R): String ==
      s: String := ""
      sp := OM_-STRINGTOSTRINGPTR(s)$Lisp
      dev: OpenMathDevice := OMopenString(sp pretend String, OMencodingXML())
      OMputObject(dev)
      outputOMExpr(dev, ex)
      OMputEndObject(dev)
      OMclose(dev)
      s := OM_-STRINGPTRTOSTRING(sp)$Lisp pretend String
      s

    OMwrite(ex: Expression R, wholeObj: Boolean): String ==
      s: String := ""
      sp := OM_-STRINGTOSTRINGPTR(s)$Lisp
      dev: OpenMathDevice := OMopenString(sp pretend String, OMencodingXML())
      if wholeObj then
        OMputObject(dev)
      outputOMExpr(dev, ex)
      if wholeObj then
        OMputEndObject(dev)
      OMclose(dev)
      s := OM_-STRINGPTRTOSTRING(sp)$Lisp pretend String
      s

    OMwrite(dev: OpenMathDevice, ex: Expression R): Void ==
      OMputObject(dev)
      outputOMExpr(dev, ex)
      OMputEndObject(dev)

    OMwrite(dev: OpenMathDevice, ex: Expression R, wholeObj: Boolean): Void ==
      if wholeObj then
        OMputObject(dev)
      outputOMExpr(dev, ex)
      if wholeObj then
        OMputEndObject(dev)