This file is indexed.

/usr/share/axiom-20170501/src/algebra/ONECOMP.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
)abbrev domain ONECOMP OnePointCompletion
++ Author: Manuel Bronstein
++ Date Created: 4 Oct 1989
++ Date Last Updated: 1 Nov 1989
++ Description: 
++ Completion with infinity.
++ Adjunction of a complex infinity to a set.

OnePointCompletion(R) : SIG == CODE where
  R : SetCategory

  B ==> Boolean

  SIG ==> Join(SetCategory, FullyRetractableTo R) with

    infinity : () -> %
      ++  infinity() returns infinity.

    finite? : %  -> B
      ++ finite?(x) tests if x is finite.

    infinite?: %  -> B
      ++ infinite?(x) tests if x is infinite.

    if R has AbelianGroup then AbelianGroup

    if R has OrderedRing then OrderedRing

    if R has IntegerNumberSystem then

      rational? : % -> Boolean
        ++ rational?(x) tests if x is a finite rational number.

      rational : % -> Fraction Integer
        ++ rational(x) returns x as a finite rational number.
        ++ Error: if x is not a rational number.

      rationalIfCan : % -> Union(Fraction Integer, "failed")
        ++ rationalIfCan(x) returns x as a finite rational number if
        ++ it is one, "failed" otherwise.

  CODE ==> add

    Rep := Union(R, "infinity")

    coerce(r:R):% == r

    retract(x:%):R == (x case R => x::R; error "Not finite")

    finite? x == x case R

    infinite? x == x case "infinity"

    infinity() == "infinity"

    retractIfCan(x:%):Union(R, "failed") == (x case R => x::R; "failed")

    coerce(x:%):OutputForm ==
      x case "infinity" => "infinity"::OutputForm
      x::R::OutputForm

    x = y ==
      x case "infinity" => y case "infinity"
      y case "infinity" => false
      x::R = y::R

    if R has AbelianGroup then

      0 == 0$R

      n:Integer * x:% ==
        x case "infinity" =>
          zero? n => error "Undefined product"
          infinity()
        n * x::R

      - x ==
        x case "infinity" => error "Undefined inverse"
        - (x::R)

      x + y ==
        x case "infinity" => x
        y case "infinity" => y
        x::R + y::R

    if R has OrderedRing then

      fininf: R -> %

      1                == 1$R

      characteristic() == characteristic()$R

      fininf r ==
        zero? r => error "Undefined product"
        infinity()

      x:% * y:% ==
        x case "infinity" =>
          y case "infinity" => y
          fininf(y::R)
        y case "infinity" => fininf(x::R)
        x::R * y::R

      recip x ==
        x case "infinity" => 0
        zero?(x::R) => infinity()
        (u := recip(x::R)) case "failed" => "failed"
        u::R::%

      x < y ==
        x case "infinity" => false     -- do not change the order
        y case "infinity" => true      -- of those two tests
        x::R < y::R

    if R has IntegerNumberSystem then

      rational? x == finite? x

      rational  x == rational(retract(x)@R)

      rationalIfCan x ==
        (r:= retractIfCan(x)@Union(R,"failed")) case "failed" =>"failed"
        rational(r::R)