/usr/share/axiom-20170501/src/algebra/OPTPACK.spad is in axiom-source 20170501-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 | )abbrev package OPTPACK AnnaNumericalOptimizationPackage
++ Author: Brian Dupee
++ Date Created: February 1995
++ Date Last Updated: December 1997
++ Description:
++ \axiomType{AnnaNumericalOptimizationPackage} is a \axiom{package} of
++ functions for the \axiomType{NumericalOptimizationCategory}
++ with \axiom{measure} and \axiom{optimize}.
AnnaNumericalOptimizationPackage() : SIG == CODE where
EDF ==> Expression DoubleFloat
LEDF ==> List Expression DoubleFloat
LDF ==> List DoubleFloat
MDF ==> Matrix DoubleFloat
DF ==> DoubleFloat
LOCDF ==> List OrderedCompletion DoubleFloat
OCDF ==> OrderedCompletion DoubleFloat
LOCF ==> List OrderedCompletion Float
OCF ==> OrderedCompletion Float
LEF ==> List Expression Float
EF ==> Expression Float
LF ==> List Float
F ==> Float
LS ==> List Symbol
LST ==> List String
INT ==> Integer
NOA ==> Record(fn:EDF, init:LDF, lb:LOCDF, cf:LEDF, ub:LOCDF)
LSA ==> Record(lfn:LEDF, init:LDF)
IFL ==> List(Record(ifail:Integer,instruction:String))
Entry ==> Record(chapter:String, type:String, domainName: String,
defaultMin:F, measure:F, failList:IFL, explList:LST)
Measure ==> Record(measure:F,name:String, explanations:List String)
Measure2 ==> Record(measure:F,explanations:String)
RT ==> RoutinesTable
UNOALSA ==> Union(noa:NOA,lsa:LSA)
SIG ==> with
measure : NumericalOptimizationProblem -> Measure
++ measure(prob) is a top level ANNA function for identifying the most
++ appropriate numerical routine from those in the routines table
++ provided for solving the numerical optimization problem defined by
++ \axiom{prob} by checking various attributes of the functions and
++ calculating a measure of compatibility of each routine to these
++ attributes.
++
++ It calls each \axiom{domain} of \axiom{category}
++ \axiomType{NumericalOptimizationCategory} in turn to calculate all
++ measures and returns the best the name of the most
++ appropriate domain and any other relevant information.
measure : (NumericalOptimizationProblem,RT) -> Measure
++ measure(prob,R) is a top level ANNA function for identifying the most
++ appropriate numerical routine from those in the routines table
++ provided for solving the numerical optimization problem defined by
++ \axiom{prob} by checking various attributes of the functions and
++ calculating a measure of compatibility of each routine to these
++ attributes.
++
++ It calls each \axiom{domain} listed in \axiom{R} of \axiom{category}
++ \axiomType{NumericalOptimizationCategory} in turn to calculate all
++ measures and returns the best the name of the most
++ appropriate domain and any other relevant information.
optimize : (NumericalOptimizationProblem,RT) -> Result
++ optimize(prob,routines) is a top level ANNA function to
++ minimize a function or a set of functions with any constraints
++ as defined within \axiom{prob}.
++
++ It iterates over the \axiom{domains} listed in \axiom{routines} of
++ \axiomType{NumericalOptimizationCategory}
++ to get the name and other relevant information of the best
++ \axiom{measure} and then optimize the function on that \axiom{domain}.
optimize : NumericalOptimizationProblem -> Result
++ optimize(prob) is a top level ANNA function to
++ minimize a function or a set of functions with any constraints
++ as defined within \axiom{prob}.
++
++ It iterates over the \axiom{domains} of
++ \axiomType{NumericalOptimizationCategory}
++ to get the name and other relevant information of the best
++ \axiom{measure} and then optimize the function on that \axiom{domain}.
goodnessOfFit : NumericalOptimizationProblem -> Result
++ goodnessOfFit(prob) is a top level ANNA function to
++ check to goodness of fit of a least squares model
++ as defined within \axiom{prob}.
++
++ It iterates over the \axiom{domains} of
++ \axiomType{NumericalOptimizationCategory}
++ to get the name and other relevant information of the best
++ \axiom{measure} and then optimize the function on that \axiom{domain}.
++ It then calls the numerical routine \axiomType{E04YCF} to get estimates
++ of the variance-covariance matrix of the regression coefficients of
++ the least-squares problem.
++
++ It thus returns both the results of the optimization and the
++ variance-covariance calculation.
optimize : (EF,LF,LOCF,LEF,LOCF) -> Result
++ optimize(f,start,lower,cons,upper) is a top level ANNA function to
++ minimize a function, \axiom{f}, of one or more variables with the
++ given constraints.
++
++ These constraints may be simple constraints on the variables
++ in which case \axiom{cons} would be an empty list and the bounds on
++ those variables defined in \axiom{lower} and \axiom{upper}, or a
++ mixture of simple, linear and non-linear constraints, where
++ \axiom{cons} contains the linear and non-linear constraints and
++ the bounds on these are added to \axiom{upper} and \axiom{lower}.
++
++ The parameter \axiom{start} is a list of the initial guesses of the
++ values of the variables.
++
++ It iterates over the \axiom{domains} of
++ \axiomType{NumericalOptimizationCategory}
++ to get the name and other relevant information of the best
++ \axiom{measure} and then optimize the function on that \axiom{domain}.
optimize : (EF,LF,LOCF,LOCF) -> Result
++ optimize(f,start,lower,upper) is a top level ANNA function to
++ minimize a function, \axiom{f}, of one or more variables with
++ simple constraints. The bounds on
++ the variables are defined in \axiom{lower} and \axiom{upper}.
++
++ The parameter \axiom{start} is a list of the initial guesses of the
++ values of the variables.
++
++ It iterates over the \axiom{domains} of
++ \axiomType{NumericalOptimizationCategory}
++ to get the name and other relevant information of the best
++ \axiom{measure} and then optimize the function on that \axiom{domain}.
optimize : (EF,LF) -> Result
++ optimize(f,start) is a top level ANNA function to
++ minimize a function, \axiom{f}, of one or more variables without
++ constraints.
++
++ The parameter \axiom{start} is a list of the initial guesses of the
++ values of the variables.
++
++ It iterates over the \axiom{domains} of
++ \axiomType{NumericalOptimizationCategory}
++ to get the name and other relevant information of the best
++ \axiom{measure} and then optimize the function on that \axiom{domain}.
optimize : (LEF,LF) -> Result
++ optimize(lf,start) is a top level ANNA function to
++ minimize a set of functions, \axiom{lf}, of one or more variables
++ without constraints a least-squares problem.
++
++ The parameter \axiom{start} is a list of the initial guesses of the
++ values of the variables.
++
++ It iterates over the \axiom{domains} of
++ \axiomType{NumericalOptimizationCategory}
++ to get the name and other relevant information of the best
++ \axiom{measure} and then optimize the function on that \axiom{domain}.
goodnessOfFit : (LEF,LF) -> Result
++ goodnessOfFit(lf,start) is a top level ANNA function to
++ check to goodness of fit of a least squares model the minimization
++ of a set of functions, \axiom{lf}, of one or more variables without
++ constraints.
++
++ The parameter \axiom{start} is a list of the initial guesses of the
++ values of the variables.
++
++ It iterates over the \axiom{domains} of
++ \axiomType{NumericalOptimizationCategory}
++ to get the name and other relevant information of the best
++ \axiom{measure} and then optimize the function on that \axiom{domain}.
++ It then calls the numerical routine \axiomType{E04YCF} to get estimates
++ of the variance-covariance matrix of the regression coefficients of
++ the least-squares problem.
++
++ It thus returns both the results of the optimization and the
++ variance-covariance calculation.
++
++ goodnessOfFit(lf,start) is a top level function to iterate over
++ the \axiom{domains} of \axiomType{NumericalOptimizationCategory}
++ to get the name and other relevant information of the best
++ \axiom{measure} and then optimize the function on that \axiom{domain}.
++ It then checks the goodness of fit of the least squares model.
CODE ==> add
preAnalysis:RT -> RT
zeroMeasure:Measure -> Result
optimizeSpecific:(UNOALSA,String) -> Result
measureSpecific:(String,RT,UNOALSA) -> Measure2
changeName:(Result,String) -> Result
recoverAfterFail:(UNOALSA,RT,Measure,INT,Result) -> _
Record(a:Result,b:Measure)
constant:UNOALSA -> Union(DF, "failed")
optimizeConstant:DF -> Result
import ExpertSystemToolsPackage,e04AgentsPackage,NumericalOptimizationProblem
constant(args:UNOALSA):Union(DF,"failed") ==
args case noa =>
Args := args.noa
f := Args.fn
retractIfCan(f)@Union(DoubleFloat,"failed")
"failed"
optimizeConstant(c:DF): Result ==
a := coerce(c)$AnyFunctions1(DF)
text := coerce("Constant Function")$AnyFunctions1(String)
construct([[objf@Symbol,a],[method@Symbol,text]])$Result
preAnalysis(args:UNOALSA,t:RT):RT ==
r := selectOptimizationRoutines(t)$RT
args case lsa =>
selectSumOfSquaresRoutines(r)$RT
r
zeroMeasure(m:Measure):Result ==
a := coerce(0$F)$AnyFunctions1(F)
text := coerce("Zero Measure")$AnyFunctions1(String)
r := construct([[objf@Symbol,a],[method@Symbol,text]])$Result
concat(measure2Result m,r)
measureSpecific(name:String,R:RT,args:UNOALSA): Measure2 ==
args case noa =>
arg:NOA := args.noa
name = "e04dgfAnnaType" => measure(R,arg)$e04dgfAnnaType
name = "e04fdfAnnaType" => measure(R,arg)$e04fdfAnnaType
name = "e04gcfAnnaType" => measure(R,arg)$e04gcfAnnaType
name = "e04jafAnnaType" => measure(R,arg)$e04jafAnnaType
name = "e04mbfAnnaType" => measure(R,arg)$e04mbfAnnaType
name = "e04nafAnnaType" => measure(R,arg)$e04nafAnnaType
name = "e04ucfAnnaType" => measure(R,arg)$e04ucfAnnaType
error("measureSpecific","invalid type name: " name)$ErrorFunctions
args case lsa =>
arg2:LSA := args.lsa
name = "e04fdfAnnaType" => measure(R,arg2)$e04fdfAnnaType
name = "e04gcfAnnaType" => measure(R,arg2)$e04gcfAnnaType
error("measureSpecific","invalid type name: " name)$ErrorFunctions
error("measureSpecific","invalid argument type")$ErrorFunctions
measure(Args:NumericalOptimizationProblem,R:RT):Measure ==
args:UNOALSA := retract(Args)$NumericalOptimizationProblem
sofar := 0$F
best := "none" :: String
routs := copy R
routs := preAnalysis(args,routs)
empty?(routs)$RT =>
error("measure", "no routines found")$ErrorFunctions
rout := inspect(routs)$RT
e := retract(rout.entry)$AnyFunctions1(Entry)
meth := empty()$(List String)
for i in 1..# routs repeat
rout := extract!(routs)$RT
e := retract(rout.entry)$AnyFunctions1(Entry)
n := e.domainName
if e.defaultMin > sofar then
m := measureSpecific(n,R,args)
if m.measure > sofar then
sofar := m.measure
best := n
str := [concat(concat([string(rout.key)$Symbol,"measure: ",
outputMeasure(m.measure)," - "],
m.explanations)$(List String))$String]
else
str := [concat([string(rout.key)$Symbol
," is no better than other routines"])$String]
meth := append(meth,str)$(List String)
[sofar,best,meth]
measure(args:NumericalOptimizationProblem):Measure ==
measure(args,routines()$RT)
optimizeSpecific(args:UNOALSA,name:String):Result ==
args case noa =>
arg:NOA := args.noa
name = "e04dgfAnnaType" => numericalOptimization(arg)$e04dgfAnnaType
name = "e04fdfAnnaType" => numericalOptimization(arg)$e04fdfAnnaType
name = "e04gcfAnnaType" => numericalOptimization(arg)$e04gcfAnnaType
name = "e04jafAnnaType" => numericalOptimization(arg)$e04jafAnnaType
name = "e04mbfAnnaType" => numericalOptimization(arg)$e04mbfAnnaType
name = "e04nafAnnaType" => numericalOptimization(arg)$e04nafAnnaType
name = "e04ucfAnnaType" => numericalOptimization(arg)$e04ucfAnnaType
error("optimizeSpecific","invalid type name: " name)$ErrorFunctions
args case lsa =>
arg2:LSA := args.lsa
name = "e04fdfAnnaType" => numericalOptimization(arg2)$e04fdfAnnaType
name = "e04gcfAnnaType" => numericalOptimization(arg2)$e04gcfAnnaType
error("optimizeSpecific","invalid type name: " name)$ErrorFunctions
error("optimizeSpecific","invalid type name: " name)$ErrorFunctions
changeName(ans:Result,name:String):Result ==
st:String := concat([name,"Answer"])$String
sy:Symbol := coerce(st)$Symbol
anyAns:Any := coerce(ans)$AnyFunctions1(Result)
construct([[sy,anyAns]])$Result
recoverAfterFail(args:UNOALSA,routs:RT,m:Measure,
iint:INT,r:Result):Record(a:Result,b:Measure) ==
while positive?(iint) repeat
routineName := m.name
s := recoverAfterFail(routs,routineName(1..6),iint)$RT
s case "failed" => iint := 0
(s = "no action")@Boolean => iint := 0
fl := coerce(s)$AnyFunctions1(String)
flrec:Record(key:Symbol,entry:Any):=[failure@Symbol,fl]
m2 := measure(args::NumericalOptimizationProblem,routs)
zero?(m2.measure) => iint := 0
r2:Result := optimizeSpecific(args,m2.name)
m := m2
insert!(flrec,r2)$Result
r := concat(r2,changeName(r,routineName))
iany := search(ifail@Symbol,r2)$Result
iany case "failed" => iint := 0
iint := retract(iany)$AnyFunctions1(INT)
[r,m]
optimize(Args:NumericalOptimizationProblem,t:RT):Result ==
args:UNOALSA := retract(Args)$NumericalOptimizationProblem
routs := copy(t)$RT
c:Union(DF,"failed") := constant(args)
c case DF => optimizeConstant(c)
m := measure(Args,routs)
zero?(m.measure) => zeroMeasure m
r := optimizeSpecific(args,n := m.name)
iany := search(ifail@Symbol,r)$Result
iint := 0$INT
if (iany case Any) then
iint := retract(iany)$AnyFunctions1(INT)
if positive?(iint) then
tu:Record(a:Result,b:Measure) := recoverAfterFail(args,routs,m,iint,r)
r := tu.a
m := tu.b
r := concat(measure2Result m,r)
expl := getExplanations(routs,n(1..6))$RoutinesTable
expla := coerce(expl)$AnyFunctions1(LST)
explaa:Record(key:Symbol,entry:Any) := ["explanations"::Symbol,expla]
r := concat(construct([explaa]),r)
att:List String := optAttributes(args)
atta := coerce(att)$AnyFunctions1(List String)
attr:Record(key:Symbol,entry:Any) := [attributes@Symbol,atta]
insert!(attr,r)$Result
optimize(args:NumericalOptimizationProblem):Result ==
optimize(args,routines()$RT)
goodnessOfFit(Args:NumericalOptimizationProblem):Result ==
r := optimize(Args)
args1:UNOALSA := retract(Args)$NumericalOptimizationProblem
args1 case noa => error("goodnessOfFit","Not an appropriate problem")
args:LSA := args1.lsa
lf := args.lfn
n:INT := #(variables(args))
m:INT := # lf
me := search(method,r)$Result
me case "failed" => r
meth := retract(me)$AnyFunctions1(Result)
na := search(nameOfRoutine,meth)$Result
na case "failed" => r
name := retract(na)$AnyFunctions1(String)
temp:INT := (n*(n-1)) quo 2
ns:INT :=
name = "e04fdfAnnaType" => 6*n+(2+n)*m+1+max(1,temp)
8*n+(n+2)*m+temp+1+max(1,temp)
nv:INT := ns+n
ww := search(w,r)$Result
ww case "failed" => r
ws:MDF := retract(ww)$AnyFunctions1(MDF)
fr := search(objf,r)$Result
fr case "failed" => r
f := retract(fr)$AnyFunctions1(DF)
s := subMatrix(ws,1,1,ns,nv-1)$MDF
v := subMatrix(ws,1,1,nv,nv+n*n-1)$MDF
r2 := e04ycf(0,m,n,f,s,n,v,-1)$NagOptimisationPackage
concat(r,r2)
optimize(f:EF,start:LF,lower:LOCF,cons:LEF,upper:LOCF):Result ==
args:NOA := [ef2edf(f),[f2df i for i in start],[ocf2ocdf j for j in lower],
[ef2edf k for k in cons], [ocf2ocdf l for l in upper]]
optimize(args::NumericalOptimizationProblem)
optimize(f:EF,start:LF,lower:LOCF,upper:LOCF):Result ==
optimize(f,start,lower,empty()$LEF,upper)
optimize(f:EF,start:LF):Result ==
optimize(f,start,empty()$LOCF,empty()$LOCF)
optimize(lf:LEF,start:LF):Result ==
args:LSA := [[ef2edf i for i in lf],[f2df j for j in start]]
optimize(args::NumericalOptimizationProblem)
goodnessOfFit(lf:LEF,start:LF):Result ==
args:LSA := [[ef2edf i for i in lf],[f2df j for j in start]]
goodnessOfFit(args::NumericalOptimizationProblem)
|