This file is indexed.

/usr/share/axiom-20170501/src/algebra/OPTPACK.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
)abbrev package OPTPACK AnnaNumericalOptimizationPackage
++ Author: Brian Dupee
++ Date Created: February 1995
++ Date Last Updated: December 1997
++ Description:
++ \axiomType{AnnaNumericalOptimizationPackage} is a \axiom{package} of 
++ functions for the \axiomType{NumericalOptimizationCategory} 
++ with \axiom{measure} and \axiom{optimize}.

AnnaNumericalOptimizationPackage() : SIG == CODE where

 EDF  ==> Expression DoubleFloat
 LEDF  ==> List Expression DoubleFloat
 LDF  ==> List DoubleFloat
 MDF  ==> Matrix DoubleFloat
 DF  ==> DoubleFloat
 LOCDF  ==> List OrderedCompletion DoubleFloat
 OCDF  ==> OrderedCompletion DoubleFloat
 LOCF  ==> List OrderedCompletion Float
 OCF  ==> OrderedCompletion Float
 LEF  ==> List Expression Float
 EF  ==> Expression Float
 LF  ==> List Float
 F  ==> Float
 LS  ==> List Symbol
 LST  ==> List String
 INT  ==> Integer
 NOA  ==> Record(fn:EDF, init:LDF, lb:LOCDF, cf:LEDF, ub:LOCDF)
 LSA  ==> Record(lfn:LEDF, init:LDF)
 IFL  ==> List(Record(ifail:Integer,instruction:String))
 Entry  ==> Record(chapter:String, type:String, domainName: String, 
                     defaultMin:F, measure:F, failList:IFL, explList:LST)
 Measure  ==> Record(measure:F,name:String, explanations:List String)
 Measure2  ==> Record(measure:F,explanations:String)
 RT  ==> RoutinesTable
 UNOALSA  ==> Union(noa:NOA,lsa:LSA)

 SIG ==> with

  measure : NumericalOptimizationProblem -> Measure
    ++ measure(prob) is a top level ANNA function for identifying the most
    ++ appropriate numerical routine from those in the routines table
    ++ provided for solving the numerical optimization problem defined by 
    ++ \axiom{prob} by checking various attributes of the functions and 
    ++ calculating a measure of compatibility of each routine to these 
    ++ attributes.
    ++
    ++ It calls each \axiom{domain} of \axiom{category}
    ++ \axiomType{NumericalOptimizationCategory} in turn to calculate all 
    ++ measures and returns the best the name of the most 
    ++ appropriate domain and any other relevant information.

  measure : (NumericalOptimizationProblem,RT) -> Measure
    ++ measure(prob,R) is a top level ANNA function for identifying the most
    ++ appropriate numerical routine from those in the routines table
    ++ provided for solving the numerical optimization problem defined by 
    ++ \axiom{prob} by checking various attributes of the functions and 
    ++ calculating a measure of compatibility of each routine to these 
    ++ attributes.
    ++
    ++ It calls each \axiom{domain} listed in \axiom{R} of \axiom{category}
    ++ \axiomType{NumericalOptimizationCategory} in turn to calculate all 
    ++ measures and returns the best the name of the most 
    ++ appropriate domain and any other relevant information.

  optimize : (NumericalOptimizationProblem,RT) -> Result
    ++ optimize(prob,routines) is a top level ANNA function to 
    ++ minimize a function or a set of functions with any constraints
    ++ as defined within \axiom{prob}.
    ++
    ++ It iterates over the \axiom{domains} listed in \axiom{routines} of 
    ++ \axiomType{NumericalOptimizationCategory} 
    ++ to get the name and other relevant information of the best
    ++ \axiom{measure} and then optimize the function on that \axiom{domain}.

  optimize : NumericalOptimizationProblem -> Result
    ++ optimize(prob) is a top level ANNA function to 
    ++ minimize a function or a set of functions with any constraints
    ++ as defined within \axiom{prob}.
    ++
    ++ It iterates over the \axiom{domains} of 
    ++ \axiomType{NumericalOptimizationCategory} 
    ++ to get the name and other relevant information of the best
    ++ \axiom{measure} and then optimize the function on that \axiom{domain}.

  goodnessOfFit : NumericalOptimizationProblem -> Result
    ++ goodnessOfFit(prob) is a top level ANNA function to 
    ++ check to goodness of fit of a least squares model 
    ++ as defined within \axiom{prob}.
    ++
    ++ It iterates over the \axiom{domains} of 
    ++ \axiomType{NumericalOptimizationCategory} 
    ++ to get the name and other relevant information of the best
    ++ \axiom{measure} and then optimize the function on that \axiom{domain}.
    ++ It then calls the numerical routine \axiomType{E04YCF} to get estimates
    ++ of the variance-covariance matrix of the regression coefficients of 
    ++ the least-squares problem.
    ++ 
    ++ It thus returns both the results of the optimization and the
    ++ variance-covariance calculation.

  optimize : (EF,LF,LOCF,LEF,LOCF) -> Result 
    ++ optimize(f,start,lower,cons,upper) is a top level ANNA function to 
    ++ minimize a function, \axiom{f}, of one or more variables with the 
    ++ given constraints.
    ++
    ++ These constraints may be simple constraints on the variables
    ++ in which case \axiom{cons} would be an empty list and the bounds on
    ++ those variables defined in \axiom{lower} and \axiom{upper}, or a 
    ++ mixture of simple, linear and non-linear constraints, where
    ++ \axiom{cons} contains the linear and non-linear constraints and
    ++ the bounds on these are added to \axiom{upper} and \axiom{lower}.
    ++
    ++ The parameter \axiom{start} is a list of the initial guesses of the
    ++ values of the variables.
    ++ 
    ++ It iterates over the \axiom{domains} of 
    ++ \axiomType{NumericalOptimizationCategory} 
    ++ to get the name and other relevant information of the best
    ++ \axiom{measure} and then optimize the function on that \axiom{domain}.

  optimize : (EF,LF,LOCF,LOCF) -> Result 
    ++ optimize(f,start,lower,upper) is a top level ANNA function to 
    ++ minimize a function, \axiom{f}, of one or more variables with 
    ++ simple constraints.  The bounds on
    ++ the variables are defined in \axiom{lower} and \axiom{upper}.
    ++
    ++ The parameter \axiom{start} is a list of the initial guesses of the
    ++ values of the variables.
    ++ 
    ++ It iterates over the \axiom{domains} of 
    ++ \axiomType{NumericalOptimizationCategory} 
    ++ to get the name and other relevant information of the best
    ++ \axiom{measure} and then optimize the function on that \axiom{domain}.

  optimize : (EF,LF) -> Result 
    ++ optimize(f,start) is a top level ANNA function to 
    ++ minimize a function, \axiom{f}, of one or more variables without
    ++ constraints. 
    ++
    ++ The parameter \axiom{start} is a list of the initial guesses of the
    ++ values of the variables.
    ++ 
    ++ It iterates over the \axiom{domains} of 
    ++ \axiomType{NumericalOptimizationCategory} 
    ++ to get the name and other relevant information of the best
    ++ \axiom{measure} and then optimize the function on that \axiom{domain}.

  optimize : (LEF,LF) -> Result 
    ++ optimize(lf,start) is a top level ANNA function to 
    ++ minimize a set of functions, \axiom{lf}, of one or more variables 
    ++ without constraints a least-squares problem. 
    ++
    ++ The parameter \axiom{start} is a list of the initial guesses of the
    ++ values of the variables.
    ++ 
    ++ It iterates over the \axiom{domains} of 
    ++ \axiomType{NumericalOptimizationCategory} 
    ++ to get the name and other relevant information of the best
    ++ \axiom{measure} and then optimize the function on that \axiom{domain}.

  goodnessOfFit : (LEF,LF) -> Result 
    ++ goodnessOfFit(lf,start) is a top level ANNA function to 
    ++ check to goodness of fit of a least squares model the minimization
    ++ of a set of functions, \axiom{lf}, of one or more variables without 
    ++ constraints.
    ++
    ++ The parameter \axiom{start} is a list of the initial guesses of the
    ++ values of the variables.
    ++ 
    ++ It iterates over the \axiom{domains} of 
    ++ \axiomType{NumericalOptimizationCategory} 
    ++ to get the name and other relevant information of the best
    ++ \axiom{measure} and then optimize the function on that \axiom{domain}.
    ++ It then calls the numerical routine \axiomType{E04YCF} to get estimates
    ++ of the variance-covariance matrix of the regression coefficients of 
    ++ the least-squares problem.
    ++ 
    ++ It thus returns both the results of the optimization and the
    ++ variance-covariance calculation.
    ++
    ++ goodnessOfFit(lf,start) is a top level function to iterate over 
    ++ the \axiom{domains} of \axiomType{NumericalOptimizationCategory} 
    ++ to get the name and other relevant information of the best
    ++ \axiom{measure} and then optimize the function on that \axiom{domain}.
    ++ It then checks the goodness of fit of the least squares model.

 CODE ==> add

  preAnalysis:RT -> RT
  zeroMeasure:Measure -> Result
  optimizeSpecific:(UNOALSA,String) -> Result
  measureSpecific:(String,RT,UNOALSA) -> Measure2
  changeName:(Result,String) -> Result
  recoverAfterFail:(UNOALSA,RT,Measure,INT,Result) -> _
    Record(a:Result,b:Measure)
  constant:UNOALSA -> Union(DF, "failed")
  optimizeConstant:DF -> Result

  import ExpertSystemToolsPackage,e04AgentsPackage,NumericalOptimizationProblem

  constant(args:UNOALSA):Union(DF,"failed") ==
    args case noa =>
      Args := args.noa
      f := Args.fn
      retractIfCan(f)@Union(DoubleFloat,"failed")
    "failed"

  optimizeConstant(c:DF): Result ==
    a := coerce(c)$AnyFunctions1(DF)
    text := coerce("Constant Function")$AnyFunctions1(String)
    construct([[objf@Symbol,a],[method@Symbol,text]])$Result

  preAnalysis(args:UNOALSA,t:RT):RT == 
    r := selectOptimizationRoutines(t)$RT
    args case lsa =>
      selectSumOfSquaresRoutines(r)$RT
    r

  zeroMeasure(m:Measure):Result ==
    a := coerce(0$F)$AnyFunctions1(F)
    text := coerce("Zero Measure")$AnyFunctions1(String)
    r := construct([[objf@Symbol,a],[method@Symbol,text]])$Result
    concat(measure2Result m,r)

  measureSpecific(name:String,R:RT,args:UNOALSA): Measure2 ==
    args case noa =>
      arg:NOA := args.noa
      name = "e04dgfAnnaType" => measure(R,arg)$e04dgfAnnaType
      name = "e04fdfAnnaType" => measure(R,arg)$e04fdfAnnaType
      name = "e04gcfAnnaType" => measure(R,arg)$e04gcfAnnaType
      name = "e04jafAnnaType" => measure(R,arg)$e04jafAnnaType
      name = "e04mbfAnnaType" => measure(R,arg)$e04mbfAnnaType
      name = "e04nafAnnaType" => measure(R,arg)$e04nafAnnaType
      name = "e04ucfAnnaType" => measure(R,arg)$e04ucfAnnaType
      error("measureSpecific","invalid type name: " name)$ErrorFunctions
    args case lsa =>
      arg2:LSA := args.lsa
      name = "e04fdfAnnaType" => measure(R,arg2)$e04fdfAnnaType
      name = "e04gcfAnnaType" => measure(R,arg2)$e04gcfAnnaType
      error("measureSpecific","invalid type name: " name)$ErrorFunctions
    error("measureSpecific","invalid argument type")$ErrorFunctions

  measure(Args:NumericalOptimizationProblem,R:RT):Measure ==
    args:UNOALSA := retract(Args)$NumericalOptimizationProblem
    sofar := 0$F
    best := "none" :: String
    routs := copy R
    routs := preAnalysis(args,routs)
    empty?(routs)$RT => 
      error("measure", "no routines found")$ErrorFunctions
    rout := inspect(routs)$RT
    e := retract(rout.entry)$AnyFunctions1(Entry)
    meth := empty()$(List String)
    for i in 1..# routs repeat
      rout := extract!(routs)$RT
      e := retract(rout.entry)$AnyFunctions1(Entry)
      n := e.domainName
      if e.defaultMin > sofar then
        m := measureSpecific(n,R,args)
        if m.measure > sofar then
          sofar := m.measure
          best := n
        str := [concat(concat([string(rout.key)$Symbol,"measure: ",
                 outputMeasure(m.measure)," - "],
                   m.explanations)$(List String))$String]
      else 
        str := [concat([string(rout.key)$Symbol
                         ," is no better than other routines"])$String]
      meth := append(meth,str)$(List String)
    [sofar,best,meth]

  measure(args:NumericalOptimizationProblem):Measure ==
    measure(args,routines()$RT)

  optimizeSpecific(args:UNOALSA,name:String):Result ==
    args case noa =>
      arg:NOA := args.noa
      name = "e04dgfAnnaType" => numericalOptimization(arg)$e04dgfAnnaType
      name = "e04fdfAnnaType" => numericalOptimization(arg)$e04fdfAnnaType
      name = "e04gcfAnnaType" => numericalOptimization(arg)$e04gcfAnnaType
      name = "e04jafAnnaType" => numericalOptimization(arg)$e04jafAnnaType
      name = "e04mbfAnnaType" => numericalOptimization(arg)$e04mbfAnnaType
      name = "e04nafAnnaType" => numericalOptimization(arg)$e04nafAnnaType
      name = "e04ucfAnnaType" => numericalOptimization(arg)$e04ucfAnnaType
      error("optimizeSpecific","invalid type name: " name)$ErrorFunctions
    args case lsa =>
      arg2:LSA := args.lsa
      name = "e04fdfAnnaType" => numericalOptimization(arg2)$e04fdfAnnaType
      name = "e04gcfAnnaType" => numericalOptimization(arg2)$e04gcfAnnaType
      error("optimizeSpecific","invalid type name: " name)$ErrorFunctions
    error("optimizeSpecific","invalid type name: " name)$ErrorFunctions

  changeName(ans:Result,name:String):Result ==
    st:String := concat([name,"Answer"])$String
    sy:Symbol := coerce(st)$Symbol
    anyAns:Any := coerce(ans)$AnyFunctions1(Result)
    construct([[sy,anyAns]])$Result

  recoverAfterFail(args:UNOALSA,routs:RT,m:Measure,
                     iint:INT,r:Result):Record(a:Result,b:Measure) ==
    while positive?(iint) repeat
      routineName := m.name
      s := recoverAfterFail(routs,routineName(1..6),iint)$RT
      s case "failed" => iint := 0
      (s = "no action")@Boolean => iint := 0
      fl := coerce(s)$AnyFunctions1(String)
      flrec:Record(key:Symbol,entry:Any):=[failure@Symbol,fl]
      m2 := measure(args::NumericalOptimizationProblem,routs)
      zero?(m2.measure) => iint := 0
      r2:Result := optimizeSpecific(args,m2.name)
      m := m2
      insert!(flrec,r2)$Result
      r := concat(r2,changeName(r,routineName))
      iany := search(ifail@Symbol,r2)$Result
      iany case "failed" => iint := 0
      iint := retract(iany)$AnyFunctions1(INT)
    [r,m]

  optimize(Args:NumericalOptimizationProblem,t:RT):Result ==
    args:UNOALSA := retract(Args)$NumericalOptimizationProblem
    routs := copy(t)$RT
    c:Union(DF,"failed") := constant(args)
    c case DF => optimizeConstant(c)
    m := measure(Args,routs)
    zero?(m.measure) => zeroMeasure m
    r := optimizeSpecific(args,n := m.name)
    iany := search(ifail@Symbol,r)$Result
    iint := 0$INT
    if (iany case Any) then
      iint := retract(iany)$AnyFunctions1(INT)
    if positive?(iint) then
      tu:Record(a:Result,b:Measure) := recoverAfterFail(args,routs,m,iint,r)
      r := tu.a
      m := tu.b
    r := concat(measure2Result m,r)
    expl := getExplanations(routs,n(1..6))$RoutinesTable
    expla := coerce(expl)$AnyFunctions1(LST)
    explaa:Record(key:Symbol,entry:Any) := ["explanations"::Symbol,expla]
    r := concat(construct([explaa]),r)
    att:List String := optAttributes(args)
    atta := coerce(att)$AnyFunctions1(List String)
    attr:Record(key:Symbol,entry:Any) := [attributes@Symbol,atta]
    insert!(attr,r)$Result

  optimize(args:NumericalOptimizationProblem):Result ==
    optimize(args,routines()$RT)

  goodnessOfFit(Args:NumericalOptimizationProblem):Result ==
    r := optimize(Args)
    args1:UNOALSA := retract(Args)$NumericalOptimizationProblem
    args1 case noa => error("goodnessOfFit","Not an appropriate problem")
    args:LSA := args1.lsa
    lf := args.lfn
    n:INT := #(variables(args))
    m:INT := # lf
    me := search(method,r)$Result
    me case "failed" => r
    meth := retract(me)$AnyFunctions1(Result)
    na := search(nameOfRoutine,meth)$Result
    na case "failed" => r
    name := retract(na)$AnyFunctions1(String)
    temp:INT := (n*(n-1)) quo 2
    ns:INT :=
      name = "e04fdfAnnaType" => 6*n+(2+n)*m+1+max(1,temp)
      8*n+(n+2)*m+temp+1+max(1,temp)
    nv:INT := ns+n
    ww := search(w,r)$Result
    ww case "failed" => r
    ws:MDF := retract(ww)$AnyFunctions1(MDF)
    fr := search(objf,r)$Result
    fr case "failed" => r
    f := retract(fr)$AnyFunctions1(DF)
    s := subMatrix(ws,1,1,ns,nv-1)$MDF
    v := subMatrix(ws,1,1,nv,nv+n*n-1)$MDF
    r2 := e04ycf(0,m,n,f,s,n,v,-1)$NagOptimisationPackage
    concat(r,r2)

  optimize(f:EF,start:LF,lower:LOCF,cons:LEF,upper:LOCF):Result ==
    args:NOA := [ef2edf(f),[f2df i for i in start],[ocf2ocdf j for j in lower],
                 [ef2edf k for k in cons], [ocf2ocdf l for l in upper]]
    optimize(args::NumericalOptimizationProblem)

  optimize(f:EF,start:LF,lower:LOCF,upper:LOCF):Result ==
    optimize(f,start,lower,empty()$LEF,upper)

  optimize(f:EF,start:LF):Result ==
    optimize(f,start,empty()$LOCF,empty()$LOCF)

  optimize(lf:LEF,start:LF):Result ==
    args:LSA := [[ef2edf i for i in lf],[f2df j for j in start]]
    optimize(args::NumericalOptimizationProblem)

  goodnessOfFit(lf:LEF,start:LF):Result ==
    args:LSA := [[ef2edf i for i in lf],[f2df j for j in start]]
    goodnessOfFit(args::NumericalOptimizationProblem)