This file is indexed.

/usr/share/axiom-20170501/src/algebra/OUTFORM.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
)abbrev domain OUTFORM OutputForm
++ Author: SMW March/88
++ Description:
++ This domain is used to create and manipulate mathematical expressions
++ for output.  It is intended to provide an insulating layer between
++ the expression rendering software (for example, FORTRAN or TeX) and
++ the output coercions in the various domains.

OutputForm() : SIG == CODE where

  SIG ==> SetCategory with

    print : $ -> Void
      ++ print(u) prints the form u.

    message : String -> $
      ++ message(s) creates an form with no string quotes
      ++ from string s.

    messagePrint : String -> Void
      ++ messagePrint(s) prints s without string quotes. Note:
      ++ \spad{messagePrint(s)} is equivalent to \spad{print message(s)}.

    --% Creation of atomic forms

    outputForm : Integer -> $
      ++ outputForm(n) creates an form for integer n.

    outputForm : Symbol  -> $
      ++ outputForm(s) creates an form for symbol s.

    outputForm : String  -> $
      ++ outputForm(s) creates an form for string s.

    outputForm : DoubleFloat  -> $
      ++ outputForm(sf) creates an form for small float sf.

    empty : () -> $
      ++ empty() creates an empty form.

        --% Sizings

    width : $ -> Integer
      ++ width(f) returns the width of form f (an integer).

    height : $ -> Integer
      ++ height(f) returns the height of form f (an integer).

    width : -> Integer
      ++ width() returns the width of the display area (an integer).

    height : -> Integer
      ++ height() returns the height of the display area (an integer).

    subHeight : $ -> Integer
      ++ subHeight(f) returns the height of form f below the base line.

    superHeight : $ -> Integer
      ++ superHeight(f) returns the height of form f above the base line.

         --% Space manipulations

    hspace : Integer -> $
      ++ hspace(n) creates white space of width n.
      
    vspace : Integer -> $
      ++ vspace(n) creates white space of height n.

    rspace : (Integer,Integer) -> $
      ++ rspace(n,m) creates rectangular white space, n wide by m high.

        --% Area adjustments

    left : ($,Integer) -> $
      ++ left(f,n) left-justifies form f within space of width n.

    right : ($,Integer) -> $
      ++ right(f,n) right-justifies form f within space of width n.

    center : ($,Integer) -> $
      ++ center(f,n) centers form f within space of width n.

    left : $ -> $
      ++ left(f) left-justifies form f in total space.

    right : $ -> $
      ++ right(f) right-justifies form f in total space.

    center : $ -> $
      ++ center(f) centers form f in total space.

        --% Area manipulations

    hconcat : ($,$) -> $
      ++ hconcat(f,g) horizontally concatenate forms f and g.

    vconcat : ($,$) -> $
      ++ vconcat(f,g) vertically concatenates forms f and g.

    hconcat : List $ -> $
      ++ hconcat(u) horizontally concatenates all forms in list u.

    vconcat : List $ -> $
      ++ vconcat(u) vertically concatenates all forms in list u.

        --% Application formers

    prefix : ($, List $) -> $
      ++ prefix(f,l) creates a form depicting the n-ary prefix
      ++ application of f to a tuple of arguments given by list l.

    infix : ($, List $) -> $
      ++ infix(f,l) creates a form depicting the n-ary application
      ++ of infix operation f to a tuple of arguments l.

    infix : ($, $, $) -> $
      ++ infix(op, a, b) creates a form which prints as: a op b.

    postfix : ($, $)    -> $
      ++ postfix(op, a)  creates a form which prints as: a op.

    infix? : $ -> Boolean
      ++ infix?(op) returns true if op is an infix operator,
      ++ and false otherwise.

    elt : ($, List $) -> $
      ++ elt(op,l) creates a form for application of op
      ++ to list of arguments l.

        --% Special forms

    string : $ -> $
      ++ string(f) creates f with string quotes.

    label : ($, $) -> $
      ++ label(n,f) gives form f an equation label n.

    box : $ -> $
      ++ box(f) encloses f in a box.

    matrix : List List $ -> $
      ++ matrix(llf) makes llf (a list of lists of forms) into
      ++ a form which displays as a matrix.

    zag : ($, $) -> $
      ++ zag(f,g) creates a form for the continued fraction form for f over g.

    root : $ -> $
      ++ root(f) creates a form for the square root of form f.

    root : ($, $) -> $
      ++ root(f,n) creates a form for the nth root of form f.

    over : ($, $) -> $
      ++ over(f,g) creates a form for the vertical fraction of f over g.

    slash : ($, $) -> $
      ++ slash(f,g) creates a form for the horizontal fraction of f over g.

    assign : ($, $) -> $
      ++ assign(f,g) creates a form for the assignment \spad{f := g}.

    rarrow : ($, $) -> $
      ++ rarrow(f,g) creates a form for the mapping \spad{f -> g}.

    differentiate : ($, NonNegativeInteger) -> $
      ++ differentiate(f,n) creates a form for the nth derivative of f,
      ++ for example, \spad{f'}, \spad{f''}, \spad{f'''},
      ++ "f super \spad{iv}".

    binomial : ($, $) -> $
      ++ binomial(n,m) creates a form for the binomial coefficient of n and m.

        --% Scripts

    sub : ($, $) -> $
      ++ sub(f,n) creates a form for f subscripted by n.

    super : ($, $) -> $
      ++ super(f,n) creates a form for f superscripted by n.

    presub : ($, $) -> $
      ++ presub(f,n) creates a form for f presubscripted by n.

    presuper : ($, $) -> $
      ++ presuper(f,n) creates a form for f presuperscripted by n.

    scripts : ($, List $) -> $
      ++ \spad{scripts(f, [sub, super, presuper, presub])}
      ++  creates a form for f with scripts on all 4 corners.

    supersub : ($, List $) -> $
      ++ supersub(a,[sub1,super1,sub2,super2,...])
      ++ creates a form with each subscript aligned
      ++ under each superscript.

        --% Diacritical marks

    quote : $ -> $
      ++ quote(f) creates the form f with a prefix quote.

    dot : $ -> $
      ++ dot(f) creates the form with a one dot overhead.

    dot : ($, NonNegativeInteger) -> $
      ++ dot(f,n) creates the form f with n dots overhead.

    prime : $ -> $
      ++ prime(f) creates the form f followed by a suffix prime (single quote).

    prime : ($, NonNegativeInteger) -> $
      ++ prime(f,n) creates the form f followed by n primes.

    overbar : $ -> $
      ++ overbar(f) creates the form f with an overbar.

    overlabel : ($, $) -> $
      ++ overlabel(x,f) creates the form f with "x overbar" over the top.

        --% Plexes

    sum : ($) -> $
      ++ sum(expr) creates the form prefixing expr by a capital sigma.

    sum : ($, $) -> $
      ++ sum(expr,lowerlimit) creates the form prefixing expr by
      ++ a capital sigma with a lowerlimit.

    sum : ($, $, $) -> $
      ++ sum(expr,lowerlimit,upperlimit) creates the form prefixing expr by
      ++ a capital sigma with both a lowerlimit and upperlimit.

    prod : ($) -> $
      ++ prod(expr) creates the form prefixing expr by a capital pi.

    prod : ($, $) -> $
      ++ prod(expr,lowerlimit) creates the form prefixing expr by
      ++ a capital pi with a lowerlimit.

    prod : ($, $, $) -> $
      ++ prod(expr,lowerlimit,upperlimit) creates the form prefixing expr by
      ++ a capital pi with both a lowerlimit and upperlimit.

    int : ($) -> $
      ++ int(expr) creates the form prefixing expr with an integral sign.

    int : ($, $) -> $
      ++ int(expr,lowerlimit) creates the form prefixing expr by an
      ++ integral sign with a lowerlimit.

    int : ($, $, $) -> $
      ++ int(expr,lowerlimit,upperlimit) creates the form prefixing expr by
      ++ an integral sign with both a lowerlimit and upperlimit.

        --% Matchfix forms

    brace : $ -> $
      ++ brace(f) creates the form enclosing f in braces (curly brackets).

    brace : List $ -> $
      ++ brace(lf) creates the form separating the elements of lf
      ++ by commas and encloses the result in curly brackets.

    bracket : $ -> $
      ++ bracket(f) creates the form enclosing f in square brackets.

    bracket : List $ -> $
      ++ bracket(lf) creates the form separating the elements of lf
      ++ by commas and encloses the result in square brackets.

    paren : $ -> $
      ++ paren(f) creates the form enclosing f in parentheses.

    paren : List $ -> $
      ++ paren(lf) creates the form separating the elements of lf
      ++ by commas and encloses the result in parentheses.

        --% Separators for aggregates

    pile : List $ -> $
      ++ pile(l) creates the form consisting of the elements of l which
      ++ displays as a pile, the elements begin on a new line and
      ++ are indented right to the same margin.

    commaSeparate : List $ -> $
      ++ commaSeparate(l) creates the form separating the elements of l
      ++ by commas.

    semicolonSeparate :  List $ -> $
      ++ semicolonSeparate(l) creates the form separating the elements of l
      ++ by semicolons.

    blankSeparate : List $ -> $
      ++ blankSeparate(l) creates the form separating the elements of l
      ++ by blanks.

        --% Specific applications

    "=" : ($, $) -> $
      ++ f = g creates the equivalent infix form.

    "^=" : ($, $) -> $
      ++ f ^= g creates the equivalent infix form.

    "<" : ($, $) -> $
      ++ f < g creates the equivalent infix form.

    ">" : ($, $) -> $
      ++ f > g creates the equivalent infix form.

    "<=" : ($, $) -> $
      ++ f <= g creates the equivalent infix form.

    ">=" : ($, $) -> $
      ++ f >= g creates the equivalent infix form.

    "+" : ($, $) -> $
      ++ f + g creates the equivalent infix form.

    "-" : ($, $) -> $
      ++ f - g creates the equivalent infix form.

    "-" : ($) -> $
      ++ - f creates the equivalent prefix form.

    "*" : ($, $) -> $
      ++ f * g creates the equivalent infix form.

    "/" : ($, $) -> $
      ++ f / g creates the equivalent infix form.

    "**" : ($, $) -> $
      ++ f ** g creates the equivalent infix form.

    "div" : ($, $) -> $
      ++ f div g creates the equivalent infix form.

    "rem" : ($, $) -> $
      ++ f rem g creates the equivalent infix form.

    "quo" : ($, $) -> $
      ++ f quo g creates the equivalent infix form.

    "exquo" : ($, $) -> $
      ++ exquo(f,g) creates the equivalent infix form.

    "and" : ($, $) -> $
      ++ f and g creates the equivalent infix form.

    "or" : ($, $) -> $
      ++ f or g creates the equivalent infix form.

    "not" : ($) -> $
      ++ not f creates the equivalent prefix form.

    SEGMENT : ($,$) -> $
      ++ SEGMENT(x,y) creates the infix form: \spad{x..y}.

    SEGMENT : ($) -> $
      ++ SEGMENT(x) creates the prefix form: \spad{x..}.

  CODE ==> add

        import NumberFormats

        -- Todo:
        --   program forms, greek letters
        --   infix, prefix, postfix, matchfix support in OUT BOOT
        --   labove rabove, corresponding overs.
        --   better super script, overmark, undermark
        --   bug in product, paren blankSeparate []
        --   uniformize integrals, products, etc as plexes.

        cons ==> CONS$Lisp

        car  ==> CAR$Lisp

        cdr  ==> CDR$Lisp

        Rep := List $

        a, b: $

        l: List $

        s: String

        e: Symbol

        n: Integer

        nn:NonNegativeInteger

        sform:    String  -> $

        eform:    Symbol  -> $

        iform:    Integer -> $

        print x              == mathprint(x)$Lisp

        message s            == (empty? s => empty(); s pretend $)

        messagePrint s       == print message s

        (a:$ = b:$):Boolean  == EQUAL(a, b)$Lisp

        (a:$ = b:$):$        == [sform "=",     a, b]

        coerce(a):OutputForm  == a pretend OutputForm

        outputForm n          == n pretend $

        outputForm e          == e pretend $

        outputForm(f:DoubleFloat) == f pretend $

        sform s               == s pretend $

        eform e               == e pretend $

        iform n               == n pretend $

        outputForm s ==
          sform concat(quote()$Character, concat(s, quote()$Character))

        width(a) == outformWidth(a)$Lisp

        height(a) == height(a)$Lisp

        subHeight(a) == subspan(a)$Lisp

        superHeight(a) == superspan(a)$Lisp

        height() == 20

        width() == 66

        center(a,w)   == hconcat(hspace((w - width(a)) quo 2),a)

        left(a,w)     == hconcat(a,hspace((w - width(a))))

        right(a,w)    == hconcat(hspace(w - width(a)),a)

        center(a)     == center(a,width())

        left(a)       == left(a,width())

        right(a)      == right(a,width())

        vspace(n) ==
          n = 0 => empty()
          vconcat(sform " ",vspace(n - 1))

        hspace(n) ==
          n = 0 => empty()
          sform(fillerSpaces(n)$Lisp)

        rspace(n, m) ==
          n = 0 or m = 0 => empty()
          vconcat(hspace n, rspace(n, m - 1))

        matrix ll ==
            lv:$ := [LIST2VEC$Lisp l for l in ll]
            CONS(eform MATRIX, LIST2VEC$Lisp lv)$Lisp

        pile l              == cons(eform SC, l)

        commaSeparate l     == cons(eform AGGLST,  l)

        semicolonSeparate l == cons(eform AGGSET,  l)

        blankSeparate l     ==
           c:=eform CONCATB
           l1:$:=[]
           for u in reverse l repeat
               if EQCAR(u,c)$Lisp
                  then l1:=[:cdr u,:l1]
                  else l1:=[u,:l1]
           cons(c, l1)

        brace a        == [eform BRACE,   a]

        brace l        == brace commaSeparate l

        bracket a      == [eform BRACKET, a]

        bracket l      == bracket commaSeparate l

        paren a        == [eform PAREN,   a]

        paren l        == paren commaSeparate l

        sub     (a,b)  == [eform SUB, a, b]

        super   (a, b) == [eform SUPERSUB,a,sform " ",b]

        presub(a,b) == [eform SUPERSUB,a,sform " ",sform " ",sform " ",b]

        presuper(a, b) == [eform SUPERSUB,a,sform " ",sform " ",b]

        scripts (a, l) ==
            null l => a
            null rest l => sub(a, first l)
            cons(eform SUPERSUB, cons(a, l))

        supersub(a, l) ==
            if odd?(#l) then l := append(l, [empty()])
            cons(eform ALTSUPERSUB, cons(a, l))

        hconcat(a,b)  == [eform CONCAT, a, b]

        hconcat l     == cons(eform CONCAT, l)

        vconcat(a,b)  == [eform VCONCAT, a, b]

        vconcat l     == cons(eform VCONCAT, l)

        a ^= b      == [sform "^=",    a, b]

        a < b       == [sform "<",     a, b]

        a > b       == [sform ">",     a, b]

        a <= b      == [sform "<=",    a, b]

        a >= b      == [sform ">=",    a, b]

        a + b       == [sform "+",     a, b]

        a - b       == [sform "-",     a, b]

        - a         == [sform "-",     a]

        a * b       == [sform "*",     a, b]

        a / b       == [sform "/",     a, b]

        a ** b      == [sform "**",    a, b]

        a div b     == [sform "div",   a, b]

        a rem b     == [sform "rem",   a, b]

        a quo b     == [sform "quo",   a, b]

        a exquo b   == [sform "exquo", a, b]

        a and b     == [sform "and",   a, b]

        a or b      == [sform "or",    a, b]

        not a       == [sform "not",   a]

        SEGMENT(a,b)== [eform SEGMENT, a, b]

        SEGMENT(a)  == [eform SEGMENT, a]

        binomial(a,b)==[eform BINOMIAL, a, b]

        empty() == [eform NOTHING]

        infix? a ==
            e:$ :=
                IDENTP$Lisp a => a
                STRINGP$Lisp a => INTERN$Lisp a
                return false
            if GET(e,QUOTE(INFIXOP$Lisp)$Lisp)$Lisp then true else false

        elt(a, l) ==
            cons(a, l)

        prefix(a,l)   ==
            not infix? a => cons(a, l)
            hconcat(a, paren commaSeparate l)

        infix(a, l) ==
            null l => empty()
            null rest l => first l
            infix? a => cons(a, l)
            hconcat [first l, a, infix(a, rest l)]

        infix(a,b,c)  ==
            infix? a => [a, b, c]
            hconcat [b, a, c]

        postfix(a, b) ==
            hconcat(b, a)

        string a   == [eform STRING,  a]

        quote  a   == [eform QUOTE,   a]

        overbar a  == [eform OVERBAR, a]

        dot a      == super(a, sform ".")

        prime a    == super(a, sform ",")

        dot(a,nn)   == (s := new(nn, char "."); super(a, sform s))

        prime(a,nn) == (s := new(nn, char ","); super(a, sform s))

        overlabel(a,b) == [eform OVERLABEL, a, b]

        box a      == [eform BOX,     a]

        zag(a,b)   == [eform ZAG,     a, b]

        root a     == [eform ROOT,    a]

        root(a,b)  == [eform ROOT,    a, b]

        over(a,b)  == [eform OVER,    a, b]

        slash(a,b) == [eform SLASH,   a, b]

        assign(a,b)== [eform LET,     a, b]

        label(a,b) == [eform EQUATNUM, a, b]

        rarrow(a,b)== [eform TAG, a, b]

        differentiate(a, nn)==
            zero? nn => a
            nn < 4 => prime(a, nn)
            r := FormatRoman(nn::PositiveInteger)
            s := lowerCase(r::String)
            super(a, paren sform s)

        sum(a)     == [eform SIGMA,  empty(), a]

        sum(a,b)   == [eform SIGMA,  b, a]

        sum(a,b,c) == [eform SIGMA2, b, c, a]

        prod(a)    == [eform PI,     empty(), a]

        prod(a,b)  == [eform PI,     b, a]

        prod(a,b,c)== [eform PI2,    b, c, a]

        int(a)     == [eform INTSIGN,empty(), empty(), a]

        int(a,b)   == [eform INTSIGN,b, empty(), a]

        int(a,b,c) == [eform INTSIGN,b, c, a]