This file is indexed.

/usr/share/axiom-20170501/src/algebra/PADEPAC.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
)abbrev package PADEPAC PadeApproximantPackage
++ Authors: Trager,Burge, Hassner & Watt.
++ Date Created: April 1987
++ Date Last Updated: 12 April 1990
++ References:
++ George A. Baker and Peter Graves-Morris
++ ``Pade Approximants''
++ Cambridge University Press, March 1996 ISBN 9870521450072
++ Description:
++ This package computes reliable Pad&ea. approximants using
++ a generalized Viskovatov continued fraction algorithm.

PadeApproximantPackage(R,x,pt) : SIG == CODE where
  R : Field
  x:Symbol
  pt : R

  PS ==> UnivariateTaylorSeries(R,x,pt)
  UP ==> UnivariatePolynomial(x,R)
  QF ==> Fraction UP
  CF  ==> ContinuedFraction UP
  NNI ==> NonNegativeInteger

  SIG ==> with

    pade : (NNI,NNI,PS,PS) -> Union(QF,"failed")
      ++ pade(nd,dd,ns,ds) computes the approximant as a quotient of polynomials
      ++ (if it exists) for arguments
      ++ nd (numerator degree of approximant),
      ++ dd (denominator degree of approximant),
      ++ ns (numerator series of function), and
      ++ ds (denominator series of function).

    pade : (NNI,NNI,PS) -> Union(QF,"failed")
      ++ pade(nd,dd,s)
      ++ computes the quotient of polynomials
      ++ (if it exists) with numerator degree at
      ++ most nd and denominator degree at most dd
      ++ which matches the series s to order \spad{nd + dd}.

  CODE ==> add

     n,m : NNI
     u,v : PS
     pa := PadeApproximants(R,PS,UP)

     pade(n,m,u,v) ==
       ans:=pade(n,m,u,v)$pa
       ans case "failed" => ans
       pt = 0 => ans
       num := numer(ans::QF)
       den := denom(ans::QF)
       xpt : UP := monomial(1,1)-monomial(pt,0)
       num := num(xpt)
       den := den(xpt)
       num/den

     pade(n,m,u) == pade(n,m,u,1)