This file is indexed.

/usr/share/axiom-20170501/src/algebra/PADICCT.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
)abbrev category PADICCT PAdicIntegerCategory
++ Author: Clifton J. Williamson
++ Date Created: 15 May 1990
++ Date Last Updated: 15 May 1990
++ Description: 
++ This is the category of stream-based representations of
++ the p-adic integers.

PAdicIntegerCategory(p) : Category == SIG where
  p : Integer

  I   ==> Integer
  NNI ==> NonNegativeInteger
  ST  ==> Stream
  SUP ==> SparseUnivariatePolynomial

  SIG ==> Join(EuclideanDomain,CharacteristicZero) with

    digits : % -> ST I
      ++ \spad{digits(x)} returns a stream of p-adic digits of x.

    order : % -> NNI
      ++ \spad{order(x)} returns the exponent of the highest power of p
      ++ dividing x.

    extend : (%,I) -> %
      ++ \spad{extend(x,n)} forces the computation of digits up to order n.

    complete : % -> %
      ++ \spad{complete(x)} forces the computation of all digits.

    modulus : () -> I
      ++ \spad{modulus()} returns the value of p.

    moduloP : % -> I
      ++ \spad{modulo(x)} returns a, where \spad{x = a + b p}.

    quotientByP : % -> %
      ++ \spad{quotientByP(x)} returns b, where \spad{x = a + b p}.

    approximate : (%,I) -> I
      ++ \spad{approximate(x,n)} returns an integer y such that
      ++ \spad{y = x (mod p^n)}
      ++ when n is positive, and 0 otherwise.

    sqrt : (%,I) -> %
      ++ \spad{sqrt(b,a)} returns a square root of b.
      ++ Argument \spad{a} is a square root of b \spad{(mod p)}.

    root : (SUP I,I) -> %
      ++ \spad{root(f,a)} returns a root of the polynomial \spad{f}.
      ++ Argument \spad{a} must be a root of \spad{f} \spad{(mod p)}.