/usr/share/axiom-20170501/src/algebra/PADICRC.spad is in axiom-source 20170501-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 | )abbrev domain PADICRC PAdicRationalConstructor
++ Author: Clifton J. Williamson
++ Date Created: 10 May 1990
++ Date Last Updated: 10 May 1990
++ Description:
++ This is the category of stream-based representations of Qp.
PAdicRationalConstructor(p,PADIC) : SIG == CODE where
p : Integer
PADIC : PAdicIntegerCategory p
CF ==> ContinuedFraction
I ==> Integer
NNI ==> NonNegativeInteger
OUT ==> OutputForm
L ==> List
RN ==> Fraction Integer
ST ==> Stream
SIG ==> QuotientFieldCategory(PADIC) with
approximate : (%,I) -> RN
++ \spad{approximate(x,n)} returns a rational number y such that
++ \spad{y = x (mod p^n)}.
continuedFraction : % -> CF RN
++ \spad{continuedFraction(x)} converts the p-adic rational number x
++ to a continued fraction.
removeZeroes : % -> %
++ \spad{removeZeroes(x)} removes leading zeroes from the
++ representation of the p-adic rational \spad{x}.
++ A p-adic rational is represented by (1) an exponent and
++ (2) a p-adic integer which may have leading zero digits.
++ When the p-adic integer has a leading zero digit, a 'leading zero'
++ is removed from the p-adic rational as follows:
++ the number is rewritten by increasing the exponent by 1 and
++ dividing the p-adic integer by p.
++ Note: \spad{removeZeroes(f)} removes all leading zeroes from f.
removeZeroes : (I,%) -> %
++ \spad{removeZeroes(n,x)} removes up to n leading zeroes from
++ the p-adic rational \spad{x}.
CODE ==> add
PEXPR := p :: OUT
--% representation
Rep := Record(expon:I,pint:PADIC)
getExpon: % -> I
getZp : % -> PADIC
makeQp : (I,PADIC) -> %
getExpon x == x.expon
getZp x == x.pint
makeQp(r,int) == [r,int]
--% creation
0 == makeQp(0,0)
1 == makeQp(0,1)
coerce(x:I) == x :: PADIC :: %
coerce(r:RN) == (numer(r) :: %)/(denom(r) :: %)
coerce(x:PADIC) == makeQp(0,x)
--% normalizations
removeZeroes x ==
empty? digits(xx := getZp x) => 0
zero? moduloP xx =>
removeZeroes makeQp(getExpon x + 1,quotientByP xx)
x
removeZeroes(n,x) ==
n <= 0 => x
empty? digits(xx := getZp x) => 0
zero? moduloP xx =>
removeZeroes(n - 1,makeQp(getExpon x + 1,quotientByP xx))
x
--% arithmetic
x = y ==
EQ(x,y)$Lisp => true
n := getExpon(x) - getExpon(y)
n >= 0 =>
(p**(n :: NNI) * getZp(x)) = getZp(y)
(p**((- n) :: NNI) * getZp(y)) = getZp(x)
x + y ==
n := getExpon(x) - getExpon(y)
n >= 0 =>
makeQp(getExpon y,getZp(y) + p**(n :: NNI) * getZp(x))
makeQp(getExpon x,getZp(x) + p**((-n) :: NNI) * getZp(y))
-x == makeQp(getExpon x,-getZp(x))
x - y ==
n := getExpon(x) - getExpon(y)
n >= 0 =>
makeQp(getExpon y,p**(n :: NNI) * getZp(x) - getZp(y))
makeQp(getExpon x,getZp(x) - p**((-n) :: NNI) * getZp(y))
n:I * x:% == makeQp(getExpon x,n * getZp x)
x:% * y:% == makeQp(getExpon x + getExpon y,getZp x * getZp y)
x:% ** n:I ==
zero? n => 1
positive? n => expt(x,n :: PositiveInteger)$RepeatedSquaring(%)
inv expt(x,(-n) :: PositiveInteger)$RepeatedSquaring(%)
recip x ==
x := removeZeroes(1000,x)
zero? moduloP(xx := getZp x) => "failed"
(inv := recip xx) case "failed" => "failed"
makeQp(- getExpon x,inv :: PADIC)
inv x ==
(inv := recip x) case "failed" => error "inv: no inverse"
inv :: %
x:% / y:% == x * inv y
x:PADIC / y:PADIC == (x :: %) / (y :: %)
x:PADIC * y:% == makeQp(getExpon y,x * getZp y)
approximate(x,n) ==
k := getExpon x
(p :: RN) ** k * approximate(getZp x,n - k)
cfStream: % -> Stream RN
cfStream x == delay
invx := inv x; x0 := approximate(invx,1)
concat(x0,cfStream(invx - (x0 :: %)))
continuedFraction x ==
x0 := approximate(x,1)
reducedContinuedFraction(x0,cfStream(x - (x0 :: %)))
termOutput:(I,I) -> OUT
termOutput(k,c) ==
k = 0 => c :: OUT
mon := (k = 1 => PEXPR; PEXPR ** (k :: OUT))
c = 1 => mon
c = -1 => -mon
(c :: OUT) * mon
showAll?:() -> Boolean
-- check a global Lisp variable
showAll?() == true
coerce(x:%):OUT ==
x := removeZeroes(_$streamCount$Lisp,x)
m := getExpon x; zp := getZp x
uu := digits zp
l : L OUT := empty()
empty? uu => 0 :: OUT
n : NNI ; count : NNI := _$streamCount$Lisp
for n in 0..count while not empty? uu repeat
if frst(uu) ^= 0 then
l := concat(termOutput((n :: I) + m,frst(uu)),l)
uu := rst uu
if showAll?() then
for n in (count + 1).. while explicitEntries? uu and _
not eq?(uu,rst uu) repeat
if frst(uu) ^= 0 then
l := concat(termOutput((n::I) + m,frst(uu)),l)
uu := rst uu
l :=
explicitlyEmpty? uu => l
eq?(uu,rst uu) and frst uu = 0 => l
concat(prefix("O" :: OUT,[PEXPR ** ((n :: I) + m) :: OUT]),l)
empty? l => 0 :: OUT
reduce("+",reverse_! l)
|