/usr/share/axiom-20170501/src/algebra/PAFF.spad is in axiom-source 20170501-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 | )abbrev package PAFF PackageForAlgebraicFunctionField
++ Author: Gaetan Hache
++ Date created: June 1995
++ Date Last Updated: May 2010 by Tim Daly
++ Description:
++ References:
++ Hach95 Effective construction of algebraic geometry codes
++ Walk78 Algebraic Curves
++ Vogl07 Genus of a Plane Curve
++ Fult08 Algebraic Curves: An Introduction to Algebraic Geometry
++ A package that implements the Brill-Noether algorithm.
++ Part of the PAFF package
PackageForAlgebraicFunctionField(K,symb,BLMET) : SIG == CODE where
K : Field
symb : List(Symbol)
BLMET : BlowUpMethodCategory
PolyRing ==> DistributedMultivariatePolynomial(symb,K)
E ==> DirectProduct(#symb,NonNegativeInteger)
AFP ==> AffinePlane(K)
ProjPt ==> ProjectivePlane(K)
PCS ==> NeitherSparseOrDensePowerSeries(K)
Plc ==> Places(K)
DIVISOR ==> Divisor(Plc)
InfClsPoint ==> InfClsPt(K,symb,BLMET)
DesTree ==> DesingTree(InfClsPoint)
FRACPOLY ==> Fraction PolyRing
NNI ==> NonNegativeInteger
PI ==> PositiveInteger
UTSZ ==> UnivariateTaylorSeriesCZero(Integer,t)
PAFFPC ==> GeneralPackageForAlgebraicFunctionField
PACKPOLY ==> PackageForPoly(K,PolyRing,E,#symb)
BP ==> PAFFPC(K,symb,PolyRing,E,ProjPt,PCS,Plc,DIVISOR,InfClsPoint,DesTree,BLMET)
SIG ==> with
homogenize : (PolyRing,Integer) -> PolyRing
interpolateFormsForFact : (DIVISOR,List PolyRing) -> List(PolyRing)
fullDesTree : () -> Void
fullInfClsPt : () -> Void
setCurve : PolyRing -> PolyRing
++ setCurve sets the defining polynomial for the curve
++
++X K:=PF 101
++X R:=DMP([X,Y,Z],K)
++X P:=PAFF(K,[X,Y,Z],BLQT)
++X C:R:= (X^2 + Y^2)^3 - 4 * X^2 * Y^2 * Z^2
++X setCurve(C)$P
projectivePoint : List K -> ProjPt
pointDominateBy : Plc -> ProjPt
++ pointDominateBy(pl) returns the projective point dominated
++ by the place pl.
placesAbove : ProjPt -> List Plc
setSingularPoints : List ProjPt -> List ProjPt
goppaCode : (DIVISOR,DIVISOR) -> Matrix K
goppaCode : (DIVISOR,List(Plc)) -> Matrix K
rationalPlaces : () -> List Plc
++ rationalPlaces() returns all the rational places of the
++ curve defined by the polynomial given to the package.
theCurve : () -> PolyRing
++ theCurve() returns the specified polynomial for the package.
++
++X K:=PF 101
++X R:=DMP([X,Y,Z],K)
++X P:=PAFF(K,[X,Y,Z],BLQT)
++X C:R:= (X^2 + Y^2)^3 - 4 * X^2 * Y^2 * Z^2
++X theCurve(C)$P
genus : () -> NNI
++ genus() returns the genus of the curve defined by the polynomial
++ given to the package.
++
++X K:=PF 101
++X R:=DMP([X,Y,Z],K)
++X P:=PAFF(K,[X,Y,Z],BLQT)
++X C:R:= (X^2 + Y^2)^3 - 4 * X^2 * Y^2 * Z^2
++X genus()$P
genusNeg : () -> Integer
desingTreeWoFullParam : () -> List DesTree
++ desingTreeWoFullParam() returns the desingularisation trees at all
++ singular points of the curve defined by the polynomial given to
++ the package. The local parametrizations are not computed.
desingTree : () -> List DesTree
++ desingTree() returns the desingularisation trees at all singular
++ points of the curve defined by the polynomial given to the package.
rationalPoints : () -> List(ProjPt)
singularPoints : () -> List(ProjPt)
++ singularPoints() returns the singular points of the
++ curve defined by the polynomial given to the package.
++ If the singular points lie in an extension of the specified
++ ground field an error message is issued specifying the extension
++ degree needed to find all singular points.
++
++X K:=PF 101
++X R:=DMP([X,Y,Z],K)
++X P:=PAFF(K,[X,Y,Z],BLQT)
++X C:R:= (X^2 + Y^2)^3 - 4 * X^2 * Y^2 * Z^2
++X singularPoints()$P
parametrize : (PolyRing,Plc) -> PCS
++ parametrize(f,pl) returns a local parametrization of f at the place pl
lBasis : (DIVISOR,NNI) -> List FRACPOLY
lBasis : DIVISOR -> Record(num:List PolyRing, den: PolyRing)
++ lBasis computes a basis associated to the specified divisor
findOrderOfDivisor : (DIVISOR,Integer,Integer) -> _
Record(ord:Integer,num:PolyRing,den:PolyRing,upTo:Integer)
interpolateForms : (DIVISOR,NNI) -> List(PolyRing)
++ interpolateForms(d,n) returns a basis of the interpolate forms of
++ degree n of the divisor d.
eval : (PolyRing,Plc) -> K
++ eval(f,pl) evaluate f at the place pl.
eval : (PolyRing,PolyRing,Plc) -> K
++ eval(f,g,pl) evaluate the function f/g at the place pl.
eval : (FRACPOLY,Plc) -> K
++ eval(u,pl) evaluate the function u at the place pl.
evalIfCan : (PolyRing,Plc) -> Union(K,"failed")
++ evalIfCan(f,pl) evaluate f at the place pl
++ (returns "failed" if it is a pole).
evalIfCan : (PolyRing,PolyRing,Plc) -> Union(K,"failed")
++ evalIfCan(f,g,pl) evaluate the function f/g at the place pl
++ (returns "failed" if it is a pole).
evalIfCan : (FRACPOLY,Plc) -> Union(K,"failed")
++ evalIfCan(u,pl) evaluate the function u at the place pl
++ (returns "failed" if it is a pole).
intersectionDivisor : PolyRing -> DIVISOR
++ intersectionDivisor(pol) compute the intersection divisor (the
++ Cartier divisor) of the form pol with the curve. If some
++ intersection points lie in an extension of the ground field,
++ an error message is issued specifying the extension degree
++ needed to find all the intersection points.
++ (If pol is not homogeneous an error message is issued).
adjunctionDivisor : () -> DIVISOR
++ adjunctionDivisor computes the adjunction divisor of the plane
++ curve given by the polynomial set with the function setCurve.
if K has Finite then --should we say LocallyAlgebraicallyClosedField??
LPolynomial : () -> SparseUnivariatePolynomial Integer
++ LPolynomial() returns the L-Polynomial of the curve.
LPolynomial : PI -> SparseUnivariatePolynomial Integer
++ LPolynomial(d) returns the L-Polynomial of the curve in
++ constant field extension of degree d.
classNumber : () -> Integer
++ classNumber() returns the class number of the curve.
placesOfDegree : PI -> List Plc
++ placesOfDegree(d) returns all places of degree d of the curve.
numberOfPlacesOfDegree : PI -> Integer
++ numberOfPlacesOfDegree(pi) returns the number of places of
++ the given degree
numberRatPlacesExtDeg : PI -> Integer
++ numberRatPlacesExtDeg(n) returns the number of rational
++ places in the constant field extenstion of degree n
numberPlacesDegExtDeg : (PI, PI) -> Integer
++ numberPlacesDegExtDeg(d, n) returns the number of
++ places of degree d in the constant field extension of degree n
ZetaFunction : () -> UTSZ
++ ZetaFunction ()eturns the Zeta function of the curve. Calculated
++ by using the L-Polynomial
ZetaFunction : PI -> UTSZ
++ ZetaFunction(pi) eturns the Zeta function of the curve in
++ constant field extension. Calculated by using the L-Polynomial
CODE ==> add
import BP
homogenize(pol,n) == homogenize(pol,n)$PACKPOLY
pointDominateBy(pl)== pointDominateBy(pl)$BP
placesAbove(pt)== placesAbove(pt)$BP
setSingularPoints(lspt)== setSingularPoints(lspt)$BP
projectivePoint(lpt)==projectivePoint(lpt)$ProjPt
interpolateFormsForFact(d,lm)==
interpolateFormsForFact(d,lm)$BP
if K has Finite then
goppaCode(d:DIVISOR,lp:List(Plc))==
lb:=lBasis(d)
dd:=lb.den
ll:=[[eval(f,dd,pl) for pl in lp] for f in lb.num]
matrix ll
goppaCode(d:DIVISOR,p:DIVISOR)==
lp:=supp p
goppaCode(d,lp)
ZetaFunction == ZetaFunction()$BP
ZetaFunction(d) == ZetaFunction(d)$BP
numberOfPlacesOfDegree(i)==numberOfPlacesOfDegree(i)$BP
placesOfDegree(i) ==placesOfDegree(i)$BP
numberRatPlacesExtDeg(extDegree)==numberRatPlacesExtDeg(extDegree)$BP
numberPlacesDegExtDeg(degree,extDegree)==
numberPlacesDegExtDeg(degree,extDegree)$BP
LPolynomial == LPolynomial()$BP
LPolynomial(extDeg)==LPolynomial(extDeg)$BP
classNumber== classNumber()$BP
rationalPlaces == rationalPlaces()$BP
rationalPoints==rationalPoints()$BP
crvLocal:PolyRing
eval(f:PolyRing,pl:Plc)==
dd:= degree pl
^one?(dd) => error " cannot evaluate at place of degree greater than one"
eval(f,pl)$BP
evalIfCan(f:PolyRing,pl:Plc)==
dd:= degree pl
^one?(dd) => error " cannot evaluate at place of degree greater than one"
evalIfCan(f,pl)$BP
setCurve(pol)==setCurve(pol)$BP
lBasis(divis)==lBasis(divis)$BP
genus==genus()$BP
genusNeg==genusNeg()$BP
theCurve==theCurve()$BP
desingTree==desingTree()$BP
desingTreeWoFullParam== desingTreeWoFullParam()$BP
-- compute the adjunction divisor of the curve using
-- adjunctionDivisor from DesingTreePackage
adjunctionDivisor == adjunctionDivisor()$BP
singularPoints==singularPoints()$BP
parametrize(f,pl)==parametrize(f,pl)$BP
-- compute the interpolating forms (see package InterpolateFormsPackage)
interpolateForms(d,n)==interpolateForms(d,n)$BP
eval(f:PolyRing,g:PolyRing,pl:Plc)==eval(f,g,pl)$BP
eval(u:FRACPOLY,pl:Plc)==
ff:=numer u
gg:=denom u
eval(ff,gg,pl)
evalIfCan(f:PolyRing,g:PolyRing,pl:Plc)==evalIfCan(f,g,pl)$BP
evalIfCan(u:FRACPOLY,pl:Plc)==
ff:=numer u
gg:=denom u
evalIfCan(ff,gg,pl)
intersectionDivisor(pol)==intersectionDivisor(pol)$BP
fullDesTree==
fullOutput()$DesTree => fullOutput(false())$DesTree
fullOutput(true())$DesTree
fullInfClsPt==
fullOutput()$InfClsPoint => fullOutput(false())$InfClsPoint
fullOutput(true())$InfClsPoint
|