This file is indexed.

/usr/share/axiom-20170501/src/algebra/PAFFFF.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
)abbrev package PAFFFF PackageForAlgebraicFunctionFieldOverFiniteField
++ Author: Gaetan Hache
++ Date created: June 1995
++ Date Last Updated: May 2010 by Tim Daly
++ References:
++ Hach95 Effective construction of algebraic geometry codes
++ Walk78 Algebraic Curves
++ Vogl07 Genus of a Plane Curve
++ Fult08 Algebraic Curves: An Introduction to Algebraic Geometry
++ Description: 
++ A package that implements the Brill-Noether algorithm.
++ Part of the PAFF package

PackageForAlgebraicFunctionFieldOverFiniteField(K,symb,BLMET) : SIG == CODE where
  K:FiniteFieldCategory -- Field 
  symb :  List(Symbol)
  BLMET : BlowUpMethodCategory
    
  DK          ==> PseudoAlgebraicClosureOfFiniteField(K)
  PolyRing    ==> DistributedMultivariatePolynomial(symb,K) 
  PolyRing2   ==> DistributedMultivariatePolynomial(symb,DK)
  ProjPt      ==> ProjectivePlaneOverPseudoAlgebraicClosureOfFiniteField(K) 
  NNI         ==> NonNegativeInteger
  PI          ==> PositiveInteger
  UTSZ        ==> UnivariateTaylorSeriesCZero(Integer,t)
  PAFFPC      ==> GeneralPackageForAlgebraicFunctionField
  PCS         ==> NeitherSparseOrDensePowerSeries(DK)
  Plc         ==> PlacesOverPseudoAlgebraicClosureOfFiniteField(K) 
  DIVISOR     ==> Divisor(Plc)
  InfClsPoint ==> InfinitlyClosePointOverPseudoAlgebraicClosureOfFiniteField(K,symb,BLMET)
  DesTree     ==> DesingTree(InfClsPoint)
  FracPoly    ==> Fraction PolyRing
  PackPoly    ==> PackageForPoly(DK,PolyRing2,E,#symb)
  E           ==> DirectProduct(#symb,NNI)
  BP ==> PAFFPC(DK,symb,PolyRing2,E,ProjPt,PCS,Plc,DIVISOR,InfClsPoint,DesTree,BLMET)
  
  SIG ==>  with

    homogenize : (PolyRing,Integer) -> PolyRing
      ++ homogenize makes the exponents of every term sum to a constant
      ++ value shared by every term.
      ++
      ++X p:= nextPrime(2^20)
      ++X K:=PF p
      ++X R:=DMP([x,y,z],K)
      ++X P:=PAFFFF( K, [x,y,z], BLQT)
      ++X f:R:= y^2 - (x-1)*(x-2)*(x-3)*(x-4)*(x-5)
      ++X fh:R:= homogenize( f , 3 )$P
  
    fullDesTree : () -> Void
      ++ fullDesTree
      ++
      ++X p:= nextPrime(2^20)
      ++X K:=PF p
      ++X R:=DMP([x,y,z],K)
      ++X P:=PAFFFF( K, [x,y,z], BLQT)
      ++X f:R:= y^2 - (x-1)*(x-2)*(x-3)*(x-4)*(x-5)
      ++X fh:R:= homogenize( f , 3 )$P
      ++X setCurve(fh)$P
      ++X desingTree()$P
      ++X fullDesTree()$P
      ++X desingTree()$P

    fullInfClsPt : () -> Void
      ++
      ++X p:= nextPrime(2^20)
      ++X K:=PF p
      ++X R:=DMP([x,y,z],K)
      ++X P:=PAFFFF( K, [x,y,z], BLQT)
      ++X f:R:= y^2 - (x-1)*(x-2)*(x-3)*(x-4)*(x-5)
      ++X fh:R:= homogenize( f , 3 )$P
      ++X setCurve(fh)$P
      ++X desingTree()$P
      ++X fullDesTree()$P
      ++X fullInfClsPt()$P
      ++X desingTree()$P

    setCurve : PolyRing -> PolyRing
      ++ setCurve sets the defining curve
      ++
      ++X K1:= PF(2)
      ++X R1:= DMP([X,Y,Z],K1)
      ++X P1:= PAFFFF(K1,[X,Y,Z],BLQT)
      ++X C1:R1:=X^5 + Y^2*Z^3+Y*Z^4
      ++X setCurve(C1)$P1

    translateToOrigin : (PolyRing, ProjPt) -> PolyRing2
    
    goppaCode : (DIVISOR,DIVISOR) -> Matrix K

    goppaCode : (DIVISOR,List(Plc)) -> Matrix K

    pointDominateBy : Plc -> ProjPt
      ++ pointDominateBy(pl) returns the projective point dominated 
      ++ by the place pl.

    placesAbove : ProjPt -> List Plc
      ++ placesAbove
      ++
      ++X p:= nextPrime(2^20)
      ++X K:=PF p
      ++X R:=DMP([x,y,z],K)
      ++X P:=PAFFFF( K, [x,y,z], BLQT)
      ++X ProjPl := PROJPLPS PrimeField p
      ++X f:R:= y^2 - (x-1)*(x-2)*(x-3)*(x-4)*(x-5)
      ++X fh:R:= homogenize( f , 3 )$P
      ++X setCurve(fh)$P
      ++X g:=genus()$P
      ++X divZ := intersectionDivisor(z)$P
      ++X pInf:= first supp divZ
      ++X p1:= projectivePoint( [1,0,1] :: List K )$ProjPl
      ++X pl1:= first placesAbove( p1 )$P
      ++X p2:= projectivePoint( [2,0,1] :: List K )$ProjPl
      ++X pl2:= first placesAbove( p2 )$P
      ++X p3:= projectivePoint( [3,0,1] :: List K )$ProjPl
      ++X pl3:= first placesAbove( p3 )$P
      ++X p4:= projectivePoint( [4,0,1] :: List K )$ProjPl
      ++X pl4:= first placesAbove( p4 )$P
      ++X p5:= projectivePoint( [5,0,1] :: List K )$ProjPl
      ++X pl5:= first placesAbove( p5 )$P

    projectivePoint : List DK -> ProjPt
      ++ projectivePoint
      ++
      ++X p:= nextPrime(2^20)
      ++X K:=PF p
      ++X R:=DMP([x,y,z],K)
      ++X P:=PAFFFF( K, [x,y,z], BLQT)
      ++X ProjPl := PROJPLPS PrimeField p
      ++X f:R:= y^2 - (x-1)*(x-2)*(x-3)*(x-4)*(x-5)
      ++X fh:R:= homogenize( f , 3 )$P
      ++X setCurve(fh)$P
      ++X g:=genus()$P
      ++X divZ := intersectionDivisor(z)$P
      ++X pInf:= first supp divZ
      ++X p1:= projectivePoint( [1,0,1] :: List K )$ProjPl
      ++X pl1:= first placesAbove( p1 )$P
      ++X p2:= projectivePoint( [2,0,1] :: List K )$ProjPl
      ++X pl2:= first placesAbove( p2 )$P
      ++X p3:= projectivePoint( [3,0,1] :: List K )$ProjPl
      ++X pl3:= first placesAbove( p3 )$P
      ++X p4:= projectivePoint( [4,0,1] :: List K )$ProjPl
      ++X pl4:= first placesAbove( p4 )$P
      ++X p5:= projectivePoint( [5,0,1] :: List K )$ProjPl
      ++X pl5:= first placesAbove( p5 )$P

    setSingularPoints : List ProjPt -> List ProjPt

    rationalPlaces : () -> List Plc
      ++ rationalPlaces returns all the rational places of  the
      ++ curve defined by the polynomial given to the package.

    theCurve : () -> PolyRing
      ++ theCurve returns the specified polynomial for the package.
      ++
      ++X p:= nextPrime(2^20)
      ++X K:=PF p
      ++X R:=DMP([x,y,z],K)
      ++X P:=PAFFFF( K, [x,y,z], BLQT)
      ++X f:R:= y^2 - (x-1)*(x-2)*(x-3)*(x-4)*(x-5)
      ++X fh:R:= homogenize( f , 3 )$P
      ++X setCurve(fh)$P
      ++X theCurve()$P

    genus : () -> NNI
      ++ genus returns the genus of the curve defined by the polynomial 
      ++ given to the package.
      ++
      ++X p:= nextPrime(2^20)
      ++X K:=PF p
      ++X R:=DMP([x,y,z],K)
      ++X P:=PAFFFF( K, [x,y,z], BLQT)
      ++X f:R:= y^2 - (x-1)*(x-2)*(x-3)*(x-4)*(x-5)
      ++X fh:R:= homogenize( f , 3 )$P
      ++X setCurve(fh)$P
      ++X g:=genus()$P

    genusNeg : () -> Integer
      ++ genusNeg
      ++
      ++X K1:= PF(2)
      ++X R1:= DMP([X,Y,Z],K1)
      ++X P1:= PAFFFF(K1,[X,Y,Z],BLQT)
      ++X C1:R1:=X^5 + Y^2*Z^3+Y*Z^4
      ++X setCurve(C1)$P1
      ++X genusNeg()$P1

    desingTreeWoFullParam  : () -> List DesTree
      ++ desingTreeWoFullParam returns the desingularisation trees at all 
      ++ singular points of the curve defined by the polynomial given to 
      ++ the package. The local parametrizations are not computed.
      ++
      ++X K1:= PF(2)
      ++X R1:= DMP([X,Y,Z],K1)
      ++X P1:= PAFFFF(K1,[X,Y,Z],BLQT)
      ++X C1:R1:=X^5 + Y^2*Z^3+Y*Z^4
      ++X setCurve(C1)$P1
      ++X desingTreeWoFullParam()$P1

    desingTree : () -> List DesTree
      ++ desingTree returns the desingularisation trees at all singular points
      ++ of the curve defined by the polynomial given to the package.
      ++
      ++X p:= nextPrime(2^20)
      ++X K:=PF p
      ++X R:=DMP([x,y,z],K)
      ++X P:=PAFFFF( K, [x,y,z], BLQT)
      ++X f:R:= y^2 - (x-1)*(x-2)*(x-3)*(x-4)*(x-5)
      ++X fh:R:= homogenize( f , 3 )$P
      ++X setCurve(fh)$P
      ++X desingTree()$P

    rationalPoints : () -> List(ProjPt)
      ++ rationalPoints
      ++
      ++X K1:= PF(2)
      ++X R1:= DMP([X,Y,Z],K1)
      ++X P1:= PAFFFF(K1,[X,Y,Z],BLQT)
      ++X C1:R1:=X^5 + Y^2*Z^3+Y*Z^4
      ++X setCurve(C1)$P1
      ++X rationalPoints()$P1

    singularPoints : () -> List(ProjPt)
      ++ singularPoints() returns the singular points of the
      ++ curve defined by the polynomial given to the package.
      ++ If the singular points lie in an extension of the specified 
      ++ ground field an error message is issued specifying the extension 
      ++ degree needed to find all singular points.
      ++
      ++X p:= nextPrime(2^20)
      ++X K:=PF p
      ++X R:=DMP([x,y,z],K)
      ++X P:=PAFFFF( K, [x,y,z], BLQT)
      ++X f:R:= y^2 - (x-1)*(x-2)*(x-3)*(x-4)*(x-5)
      ++X fh:R:= homogenize( f , 3 )$P
      ++X setCurve(fh)$P
      ++X singularPoints()$P

    parametrize : (PolyRing,Plc) -> PCS
     ++ parametrize(f,pl) returns a local parametrization of f at the place pl.

    lBasis : (DIVISOR,NNI) -> List FracPoly

    lBasis : DIVISOR -> Record(num:List PolyRing, den: PolyRing)
      ++ lBasis computes a basis associated to the specified divisor
      ++
      ++X K1:= PF(2)
      ++X R1:= DMP([X,Y,Z],K1)
      ++X P1:= PAFFFF(K1,[X,Y,Z],BLQT)
      ++X C1:R1:=X^5 + Y^2*Z^3+Y*Z^4
      ++X setCurve(C1)$P1
      ++X plc3:= placesOfDegree(3)$P1
      ++X D:= 2 * reduce(+,(plc3 :: List DIV PLACESPS PF 2))
      ++X lB1:= lBasis(D)$P1

    findOrderOfDivisor : (DIVISOR,Integer,Integer) -> _
      Record(ord:Integer,num:PolyRing,den:PolyRing,upTo:Integer)

    interpolateFormsForFact : (DIVISOR,List PolyRing) -> List(PolyRing2)

    interpolateForms : (DIVISOR,NNI) -> List(PolyRing)
      ++ interpolateForms(d,n) returns a basis of the interpolate forms of 
      ++ degree n of the divisor d.
      ++
      ++X K1:= PF(2)
      ++X R1:= DMP([X,Y,Z],K1)
      ++X P1:= PAFFFF(K1,[X,Y,Z],BLQT)
      ++X C1:R1:=X^5 + Y^2*Z^3+Y*Z^4
      ++X setCurve(C1)$P1
      ++X plc3:= placesOfDegree(3)$P1
      ++X D:= 2 * reduce(+,(plc3 :: List DIV PLACESPS PF 2))
      ++X interpolateForms(D,3)$P1

    eval : (PolyRing,Plc) -> K
      ++ eval(f,pl) evaluate f at the place pl.

    eval : (PolyRing,PolyRing,Plc) -> K
      ++ eval(f,g,pl) evaluate the function f/g at the place pl.
      ++
      ++X K1:= PF(2)
      ++X R1:= DMP([X,Y,Z],K1)
      ++X P1:= PAFFFF(K1,[X,Y,Z],BLQT)
      ++X C1:R1:=X^5 + Y^2*Z^3+Y*Z^4
      ++X setCurve(C1)$P1
      ++X plc3:= placesOfDegree(3)$P1
      ++X a:= elt( first plc3 , 1 ) 
      ++X definingPolynomial(a)
      ++X a^3 + a^2 + 1
      ++X D:= 2 * reduce(+,(plc3 :: List DIV PLACESPS PF 2))
      ++X lB1:= lBasis(D)$P1
      ++X K4:= FFCG(2,4)
      ++X R4:= DMP([X,Y,Z],K4)
      ++X P4:= PAFFFF(K4,[X,Y,Z],BLQT)
      ++X C4:R4:=C1 
      ++X setCurve(C4)$P4
      ++X plc1 := placesOfDegree(1)$P4
      ++X mG:=matrix[[eval(f,lB1.den,pl)$P4 for pl in plc1 ] for f in lB1.num]
      ++X reduce(min,[33 - count(zero?,l) for l in listOfLists rowEchelon mG])

    eval : (FracPoly,Plc) -> K
      ++ eval(u,pl) evaluate the function u at the place pl.

    evalIfCan : (PolyRing,Plc) -> Union(K,"failed")
      ++ evalIfCan(f,pl) evaluate f at the place pl 
      ++ (returns "failed" if it is a pole).

    evalIfCan : (PolyRing,PolyRing,Plc) -> Union(K,"failed")
      ++ evalIfCan(f,g,pl) evaluate the function f/g at the place pl 
      ++ (returns "failed" if it is a pole).

    evalIfCan : (FracPoly,Plc) -> Union(K,"failed")
      ++ evalIfCan(u,pl) evaluate the function u at the place pl 
      ++ (returns "failed" if it is a pole).

    intersectionDivisor : PolyRing -> DIVISOR
      ++ intersectionDivisor(pol) compute the intersection divisor  of the
      ++ form pol with the curve. 
      ++ (If pol is not homogeneous an error message is issued).
      ++
      ++X p:= nextPrime(2^20)
      ++X K:=PF p
      ++X R:=DMP([x,y,z],K)
      ++X P:=PAFFFF( K, [x,y,z], BLQT)
      ++X f:R:= y^2 - (x-1)*(x-2)*(x-3)*(x-4)*(x-5)
      ++X fh:R:= homogenize( f , 3 )$P
      ++X setCurve(fh)$P
      ++X divZ := intersectionDivisor(z)$P

    adjunctionDivisor : () -> DIVISOR
      ++ adjunctionDivisor computes the adjunction divisor of the plane 
      ++ curve given by the polynomial defined by setCurve.

    if DK has Finite then --should we say LocallyAlgebraicallyClosedField??

      LPolynomial : () -> SparseUnivariatePolynomial Integer
        ++ LPolynomial() returns the L-Polynomial of the curve.
        ++
        ++X K1:= PF(2)
        ++X R1:= DMP([X,Y,Z],K1)
        ++X P1:= PAFFFF(K1,[X,Y,Z],BLQT)
        ++X C1:R1:=X^5 + Y^2*Z^3+Y*Z^4
        ++X setCurve(C1)$P1
        ++X LPolynomial()$P1

      LPolynomial : PI -> SparseUnivariatePolynomial Integer
        ++ LPolynomial(d) returns the L-Polynomial of the curve in
        ++ constant field extension of degree d. 
        ++
        ++X K1:= PF(2)
        ++X R1:= DMP([X,Y,Z],K1)
        ++X P1:= PAFFFF(K1,[X,Y,Z],BLQT)
        ++X C1:R1:=X^5 + Y^2*Z^3+Y*Z^4
        ++X setCurve(C1)$P1
        ++X LPolynomial(2)$P1

      classNumber : () -> Integer
        ++ classNumber() returns the class number of the curve.
        ++
        ++X K1:= PF(2)
        ++X R1:= DMP([X,Y,Z],K1)
        ++X P1:= PAFFFF(K1,[X,Y,Z],BLQT)
        ++X C1:R1:=X^5 + Y^2*Z^3+Y*Z^4
        ++X setCurve(C1)$P1
        ++X classNumber()$P1

      placesOfDegree : PI -> List Plc
        ++ placesOfDegree(d) returns all places of degree d of the
        ++ curve.
        ++
        ++X K1:= PF(2)
        ++X R1:= DMP([X,Y,Z],K1)
        ++X P1:= PAFFFF(K1,[X,Y,Z],BLQT)
        ++X C1:R1:=X^5 + Y^2*Z^3+Y*Z^4
        ++X setCurve(C1)$P1
        ++X plc3:= placesOfDegree(3)$P1

      numberOfPlacesOfDegree : PI -> Integer
        ++ numberOfPlacesOfDegree(pi) returns the number of places 
        ++ of the given degree
        ++
        ++X K1:= PF(2)
        ++X R1:= DMP([X,Y,Z],K1)
        ++X P1:= PAFFFF(K1,[X,Y,Z],BLQT)
        ++X C1:R1:=X^5 + Y^2*Z^3+Y*Z^4
        ++X setCurve(C1)$P1
        ++X plc3:= placesOfDegree(3)$P1
        ++X numberOfPlacesOfDegree(3)$P1

      numberRatPlacesExtDeg : PI -> Integer
        ++ numberRatPlacesExtDeg(n) returns the number of rational
        ++ places in the constant field extenstion of degree n
        ++
        ++X K1:= PF(2)
        ++X R1:= DMP([X,Y,Z],K1)
        ++X P1:= PAFFFF(K1,[X,Y,Z],BLQT)
        ++X C1:R1:=X^5 + Y^2*Z^3+Y*Z^4
        ++X setCurve(C1)$P1
        ++X numberRatPlacesExtDeg(3)$P1

      numberPlacesDegExtDeg : (PI, PI) -> Integer
        ++ numberPlacesDegExtDeg(d, n) returns the number of 
        ++ places of degree d in the constant field extension of
        ++ degree n
        ++
        ++X K1:= PF(2)
        ++X R1:= DMP([X,Y,Z],K1)
        ++X P1:= PAFFFF(K1,[X,Y,Z],BLQT)
        ++X C1:R1:=X^5 + Y^2*Z^3+Y*Z^4
        ++X setCurve(C1)$P1
        ++X numberPlacesDegExtDeg(3,2)$P1

      ZetaFunction : () -> UTSZ
        ++ ZetaFunction() returns the Zeta function of the curve. 
        ++ Calculated by using the L-Polynomial
        ++
        ++X K1:= PF(2)
        ++X R1:= DMP([X,Y,Z],K1)
        ++X P1:= PAFFFF(K1,[X,Y,Z],BLQT)
        ++X C1:R1:=X^5 + Y^2*Z^3+Y*Z^4
        ++X setCurve(C1)$P1
        ++X ZetaFunction()$P1

      ZetaFunction : PI -> UTSZ
        ++ ZetaFunction(pi) returns the Zeta function of the curve in 
        ++ constant field extension. Calculated by using the L-Polynomial
        ++
        ++X K1:= PF(2)
        ++X R1:= DMP([X,Y,Z],K1)
        ++X P1:= PAFFFF(K1,[X,Y,Z],BLQT)
        ++X C1:R1:=X^5 + Y^2*Z^3+Y*Z^4
        ++X setCurve(C1)$P1
        ++X ZetaFunction(2)$P1
        
  CODE ==>  add

    import BP

    homogenize(pol,n) == homogenize(pol,n)$PackageForPoly(K,PolyRing,E,#symb)
    
    toPolyRing2: PolyRing -> PolyRing2

    toPolyRing: PolyRing2 -> PolyRing

    projectivePoint(lpt)==projectivePoint(lpt)$ProjPt

    pointDominateBy(pl)== pointDominateBy(pl)$BP

    placesAbove(pt)== placesAbove(pt)$BP

    setSingularPoints(lspt)==    setSingularPoints(lspt)$BP
    
    findOrderOfDivisor(divis,lb,hb) ==
      ens:=findOrderOfDivisor(divis,lb,hb)$BP
      [ens.ord, toPolyRing ens.num, toPolyRing ens.den, ens.upTo]      
    
    setCurve(pol)==
      ooo:=setCurve(toPolyRing2 pol)$BP
      pol
    
    ZetaFunction == ZetaFunction()$BP

    ZetaFunction(d) == ZetaFunction(d)$BP

    numberOfPlacesOfDegree(i)==numberOfPlacesOfDegree(i)$BP

    placesOfDegree(i) ==placesOfDegree(i)$BP

    numberRatPlacesExtDeg(extDegree)==numberRatPlacesExtDeg(extDegree)$BP

    numberPlacesDegExtDeg(degree,extDegree)==
      numberPlacesDegExtDeg(degree,extDegree)$BP

    LPolynomial == LPolynomial()$BP

    LPolynomial(extDeg)==LPolynomial(extDeg)$BP

    classNumber== classNumber()$BP

    rationalPlaces == rationalPlaces()$BP 

    rationalPoints==rationalPoints()$BP
      
    goppaCode(d:DIVISOR,lp:List(Plc))==
      lb:=lBasis(d)
      dd:=lb.den
      ll:=[[eval(f,dd,pl) for pl in lp] for f in lb.num]
      matrix ll
      
    goppaCode(d:DIVISOR,p:DIVISOR)==
      lp:=supp p
      goppaCode(d,lp)

    toPolyRing(pol)==
      zero?(pol) => 0$PolyRing
      lc:=leadingCoefficient pol
      lce:K:= retract lc
      lm:=leadingMonomial pol
      lt:=degree lm
      monomial(lce,lt)$PolyRing + toPolyRing( reductum pol )

    toPolyRing2(pol)==
      zero?(pol) => 0$PolyRing2
      lc:=leadingCoefficient pol
      lce:DK:= lc :: DK 
      lm:=leadingMonomial pol
      lt:=degree lm
      monomial(lce,lt)$PolyRing2 + toPolyRing2( reductum pol )

    evalIfCan(f:PolyRing,pl:Plc)==
      dd:= degree pl
      ^one?(dd) => error " cannot evaluate at place of degree greater than one"
      ee:=evalIfCan(toPolyRing2 f,pl)$BP
      ee case "failed" => "failed"
      retract ee 
      
    eval(f:PolyRing,pl:Plc)==
      dd:= degree pl
      ^one?(dd) => error " cannot evaluate at place of degree greater than one"
      ee:=eval(toPolyRing2 f,pl)$BP
      retract ee 
      
    lBasis(divis)==
      ans:=lBasis(divis)$BP
      nn:=ans.num
      dd:=ans.den
      nnd:=[toPolyRing pol for pol in nn]
      ddd:=toPolyRing dd
      [nnd,ddd]

    genus==genus()$BP

    genusNeg==genusNeg()$BP

    theCurve==
      ccc:= theCurve()$BP
      toPolyRing ccc

    desingTree==desingTree()$BP

    desingTreeWoFullParam== desingTreeWoFullParam()$BP

    -- compute the adjunction divisor of the curve using 
    -- adjunctionDivisor from DesingTreePackage
    adjunctionDivisor == adjunctionDivisor()$BP
    
    singularPoints==singularPoints()$BP

    parametrize(f,pl)==
      ff:= toPolyRing2 f
      parametrize(ff,pl)$BP

    -- compute the interpolating forms (see package InterpolateFormsPackage)
    interpolateForms(d,n)==
      ans:=interpolateForms(d,n)$BP
      [toPolyRing pol for pol in ans]

    interpolateFormsForFact(d,lm)==
      lm2:List PolyRing2 := [ toPolyRing2 p for p in lm]
      interpolateFormsForFact(d,lm2)$BP

    evalIfCan(ff:PolyRing,gg:PolyRing,pl:Plc)==
      dd:= degree pl
      ^one?(dd) => error " cannot evaluate at place of degree greater than one"
      f:=toPolyRing2 ff
      g:=toPolyRing2 gg
      ee:=evalIfCan(f,g,pl)$BP
      ee case "failed" => "failed"
      retract ee 

    eval(ff:PolyRing,gg:PolyRing,pl:Plc)==
      dd:= degree pl
      ^one?(dd) => error " cannot evaluate at place of degree greater than one"
      f:=toPolyRing2 ff
      g:=toPolyRing2 gg
      ee:=eval(f,g,pl)$BP
      retract ee 
    
    evalIfCan(u:FracPoly,pl:Plc)==
      ff:=numer u
      gg:=denom u
      evalIfCan(ff,gg,pl)

    eval(u:FracPoly,pl:Plc)==
      ff:=numer u
      gg:=denom u
      eval(ff,gg,pl)
    
    intersectionDivisor(pol)==
      polu:=toPolyRing2 pol
      intersectionDivisor(polu)$BP

    fullDesTree==
      fullOutput()$DesTree => fullOutput(false())$DesTree
      fullOutput(true())$DesTree

    fullInfClsPt==
      fullOutput()$InfClsPoint => fullOutput(false())$InfClsPoint
      fullOutput(true())$InfClsPoint