This file is indexed.

/usr/share/axiom-20170501/src/algebra/PDEPACK.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
)abbrev package PDEPACK AnnaPartialDifferentialEquationPackage
++ Author: Brian Dupee
++ Date Created: June 1996
++ Date Last Updated: December 1997
++ Description: 
++ AnnaPartialDifferentialEquationPackage is an uncompleted
++ package for the interface to NAG PDE routines.  It has been realised that
++ a new approach to solving PDEs will need to be created.

AnnaPartialDifferentialEquationPackage() : SIG == CODE where

 LEDF  ==> List Expression DoubleFloat
 EDF  ==> Expression DoubleFloat
 LDF  ==> List DoubleFloat
 MDF  ==> Matrix DoubleFloat
 DF  ==> DoubleFloat
 LEF  ==> List Expression Float
 EF  ==> Expression Float
 MEF  ==> Matrix Expression Float
 LF  ==> List Float
 F  ==> Float
 LS  ==> List Symbol
 ST  ==> String
 LST  ==> List String
 INT  ==> Integer
 NNI  ==> NonNegativeInteger
 RT  ==> RoutinesTable
 PDEC  ==> Record(start:DF, finish:DF, grid:NNI, boundaryType:INT, 
                   dStart:MDF, dFinish:MDF)
 PDEB  ==> Record(pde:LEDF, constraints:List PDEC,
                   f:List LEDF, st:ST, tol:DF)
 IFL  ==> List(Record(ifail:INT,instruction:ST))
 Entry  ==> Record(chapter:ST, type:ST, domainName: ST, 
                    defaultMin:F, measure:F, failList:IFL, explList:LST)
 Measure  ==> Record(measure:F,name:ST, explanations:LST)

 SIG ==> with

  solve : (NumericalPDEProblem) -> Result
    ++ solve(PDEProblem) is a top level ANNA function to solve numerically 
    ++ a system of partial differential equations.  
    ++
    ++ The method used to perform the numerical
    ++ process will be one of the routines contained in the NAG numerical
    ++ Library.  The function predicts the likely most effective routine
    ++ by checking various attributes of the system of PDE's and calculating
    ++ a measure of compatibility of each routine to these attributes.
    ++
    ++ It then calls the resulting `best' routine.
    ++
    ++ ** At the moment, only Second Order Elliptic Partial Differential
    ++ Equations are solved **

  solve : (NumericalPDEProblem,RT) -> Result
    ++ solve(PDEProblem,routines) is a top level ANNA function to solve numerically a system
    ++ of partial differential equations.  
    ++
    ++ The method used to perform the numerical
    ++ process will be one of the routines contained in the NAG numerical
    ++ Library.  The function predicts the likely most effective routine
    ++ by checking various attributes of the system of PDE's and calculating
    ++ a measure of compatibility of each routine to these attributes.
    ++
    ++ It then calls the resulting `best' routine.
    ++
    ++ ** At the moment, only Second Order Elliptic Partial Differential
    ++ Equations are solved **

  solve : (F,F,F,F,NNI,NNI,LEF,List LEF,ST,DF) -> Result
    ++ solve(xmin,ymin,xmax,ymax,ngx,ngy,pde,bounds,st,tol) is a top level 
    ++ ANNA function to solve numerically a system of partial differential 
    ++ equations.  This is defined as a list of coefficients (\axiom{pde}),
    ++ a grid (\axiom{xmin}, \axiom{ymin}, \axiom{xmax}, \axiom{ymax}, 
    ++ \axiom{ngx}, \axiom{ngy}), the boundary values (\axiom{bounds}) and a
    ++ tolerance requirement (\axiom{tol}).  There is also a parameter 
    ++ (\axiom{st}) which should contain the value "elliptic" if the PDE is
    ++ known to be elliptic, or "unknown" if it is uncertain.  This causes the
    ++ routine to check whether the PDE is elliptic.
    ++
    ++ The method used to perform the numerical
    ++ process will be one of the routines contained in the NAG numerical
    ++ Library.  The function predicts the likely most effective routine
    ++ by checking various attributes of the system of PDE's and calculating
    ++ a measure of compatibility of each routine to these attributes.
    ++
    ++ It then calls the resulting `best' routine.
    ++
    ++ ** At the moment, only Second Order Elliptic Partial Differential
    ++ Equations are solved **

  solve : (F,F,F,F,NNI,NNI,LEF,List LEF,ST) -> Result
    ++ solve(xmin,ymin,xmax,ymax,ngx,ngy,pde,bounds,st) is a top level 
    ++ ANNA function to solve numerically a system of partial differential 
    ++ equations.  This is defined as a list of coefficients (\axiom{pde}),
    ++ a grid (\axiom{xmin}, \axiom{ymin}, \axiom{xmax}, \axiom{ymax}, 
    ++ \axiom{ngx}, \axiom{ngy}) and the boundary values (\axiom{bounds}).  
    ++ A default value for tolerance is used.  There is also a parameter 
    ++ (\axiom{st}) which should contain the value "elliptic" if the PDE is
    ++ known to be elliptic, or "unknown" if it is uncertain.  This causes the
    ++ routine to check whether the PDE is elliptic.
    ++
    ++ The method used to perform the numerical
    ++ process will be one of the routines contained in the NAG numerical
    ++ Library.  The function predicts the likely most effective routine
    ++ by checking various attributes of the system of PDE's and calculating
    ++ a measure of compatibility of each routine to these attributes.
    ++
    ++ It then calls the resulting `best' routine.
    ++
    ++ ** At the moment, only Second Order Elliptic Partial Differential
    ++ Equations are solved **

  measure : (NumericalPDEProblem) -> Measure
    ++ measure(prob) is a top level ANNA function for identifying the most
    ++ appropriate numerical routine from those in the routines table
    ++ provided for solving the numerical PDE
    ++ problem defined by \axiom{prob}.
    ++
    ++ It calls each \axiom{domain} of \axiom{category}
    ++ \axiomType{PartialDifferentialEquationsSolverCategory} in turn to 
    ++ calculate all measures and returns the best the name of 
    ++ the most appropriate domain and any other relevant information.
    ++ It predicts the likely most effective NAG numerical
    ++ Library routine to solve the input set of PDEs
    ++ by checking various attributes of the system of PDEs and calculating
    ++ a measure of compatibility of each routine to these attributes.

  measure : (NumericalPDEProblem,RT) -> Measure
    ++ measure(prob,R) is a top level ANNA function for identifying the most
    ++ appropriate numerical routine from those in the routines table
    ++ provided for solving the numerical PDE
    ++ problem defined by \axiom{prob}.
    ++
    ++ It calls each \axiom{domain} listed in \axiom{R} of \axiom{category}
    ++ \axiomType{PartialDifferentialEquationsSolverCategory} in turn to 
    ++ calculate all measures and returns the best the name of 
    ++ the most appropriate domain and any other relevant information.
    ++ It predicts the likely most effective NAG numerical
    ++ Library routine to solve the input set of PDEs
    ++ by checking various attributes of the system of PDEs and calculating
    ++ a measure of compatibility of each routine to these attributes.

 CODE ==> add

  import PDEB, d03AgentsPackage, ExpertSystemToolsPackage, NumericalPDEProblem

  zeroMeasure:Measure -> Result
  measureSpecific:(ST,RT,PDEB) -> Record(measure:F,explanations:ST)
  solveSpecific:(PDEB,ST) -> Result
  changeName:(Result,ST) -> Result
  recoverAfterFail:(PDEB,RT,Measure,Integer,Result) -> _
    Record(a:Result,b:Measure)

  zeroMeasure(m:Measure):Result ==
    a := coerce(0$F)$AnyFunctions1(F)
    text:= coerce("No available routine appears appropriate")$AnyFunctions1(ST)
    r := construct([[result@Symbol,a],[method@Symbol,text]])$Result
    concat(measure2Result m,r)$ExpertSystemToolsPackage

  measureSpecific(name:ST,R:RT,p:PDEB):Record(measure:F,explanations:ST) ==
    name = "d03eefAnnaType" => measure(R,p)$d03eefAnnaType
    --name = "d03fafAnnaType" => measure(R,p)$d03fafAnnaType
    error("measureSpecific","invalid type name: " name)$ErrorFunctions

  measure(P:NumericalPDEProblem,R:RT):Measure ==
    p:PDEB := retract(P)$NumericalPDEProblem
    sofar := 0$F
    best := "none" :: ST
    routs := copy R
    routs := selectPDERoutines(routs)$RT
    empty?(routs)$RT => 
      error("measure", "no routines found")$ErrorFunctions
    rout := inspect(routs)$RT
    e := retract(rout.entry)$AnyFunctions1(Entry)
    meth := empty()$LST
    for i in 1..# routs repeat
      rout := extract!(routs)$RT
      e := retract(rout.entry)$AnyFunctions1(Entry)
      n := e.domainName
      if e.defaultMin > sofar then
        m := measureSpecific(n,R,p)
        if m.measure > sofar then
          sofar := m.measure
          best := n
        str:LST := [string(rout.key)$Symbol "measure: " 
                    outputMeasure(m.measure)$ExpertSystemToolsPackage " - " 
                     m.explanations]
      else 
        str := [string(rout.key)$Symbol " is no better than other routines"]
      meth := append(meth,str)$LST
    [sofar,best,meth]

  measure(P:NumericalPDEProblem):Measure == measure(P,routines()$RT)

  solveSpecific(p:PDEB,n:ST):Result ==
    n = "d03eefAnnaType" => PDESolve(p)$d03eefAnnaType
    --n = "d03fafAnnaType" => PDESolve(p)$d03fafAnnaType
    error("solveSpecific","invalid type name: " n)$ErrorFunctions

  changeName(ans:Result,name:ST):Result ==
    sy:Symbol := coerce(name "Answer")$Symbol
    anyAns:Any := coerce(ans)$AnyFunctions1(Result)
    construct([[sy,anyAns]])$Result

  recoverAfterFail(p:PDEB,routs:RT,m:Measure,iint:Integer,r:Result):
                                            Record(a:Result,b:Measure) ==
    while positive?(iint) repeat
      routineName := m.name
      s := recoverAfterFail(routs,routineName(1..6),iint)$RT
      s case "failed" => iint := 0
      (s = "no action")@Boolean => iint := 0
      fl := coerce(s)$AnyFunctions1(ST)
      flrec:Record(key:Symbol,entry:Any):=[failure@Symbol,fl]
      m2 := measure(p::NumericalPDEProblem,routs)
      zero?(m2.measure) => iint := 0
      r2:Result := solveSpecific(p,m2.name)
      m := m2
      insert!(flrec,r2)$Result
      r := concat(r2,changeName(r,routineName))$ExpertSystemToolsPackage
      iany := search(ifail@Symbol,r2)$Result
      iany case "failed" => iint := 0
      iint := retract(iany)$AnyFunctions1(Integer)
    [r,m]

  solve(P:NumericalPDEProblem,t:RT):Result ==
    routs := copy(t)$RT
    m := measure(P,routs)
    p:PDEB := retract(P)$NumericalPDEProblem
    zero?(m.measure) => zeroMeasure m
    r := solveSpecific(p,n := m.name)
    iany := search(ifail@Symbol,r)$Result
    iint := 0$Integer
    if (iany case Any) then
      iint := retract(iany)$AnyFunctions1(Integer)
    if positive?(iint) then
      tu:Record(a:Result,b:Measure) := recoverAfterFail(p,routs,m,iint,r)
      r := tu.a
      m := tu.b
    expl := getExplanations(routs,n(1..6))$RoutinesTable
    expla := coerce(expl)$AnyFunctions1(LST)
    explaa:Record(key:Symbol,entry:Any) := ["explanations"::Symbol,expla]
    r := concat(construct([explaa]),r)
    concat(measure2Result m,r)$ExpertSystemToolsPackage

  solve(P:NumericalPDEProblem):Result == solve(P,routines()$RT)

  solve(xmi:F,xma:F,ymi:F,yma:F,nx:NNI,ny:NNI,pe:LEF,bo:List
                LEF,s:ST,to:DF):Result ==
    cx:PDEC := [f2df xmi, f2df xma, nx, 1, empty()$MDF, empty()$MDF]
    cy:PDEC := [f2df ymi, f2df yma, ny, 1, empty()$MDF, empty()$MDF]
    p:PDEB := [[ef2edf e for e in pe],[cx,cy],
                [[ef2edf u for u in w] for w in bo],s,to]
    solve(p::NumericalPDEProblem,routines()$RT)

  solve(xmi:F,xma:F,ymi:F,yma:F,nx:NNI,ny:NNI,pe:LEF,bo:List
                LEF,s:ST):Result ==
    solve(xmi,xma,ymi,yma,nx,ny,pe,bo,s,0.0001::DF)