This file is indexed.

/usr/share/axiom-20170501/src/algebra/PERM.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
)abbrev domain PERM Permutation
++ Authors: Johannes Grabmeier, Holger Gollan, Martin Rubey
++ Date Created: 19 May 1989
++ Date Last Updated: 2 June 2006
++ Reference: G. James/A. Kerber: The Representation Theory of the Symmetric
++   Group. Encycl. of Math. and its Appl., Vol. 16., Cambridge
++ Description:
++ Permutation(S) implements the group of all bijections
++ on a set S, which move only a finite number of points.
++ A permutation is considered as a map from S into S. In particular
++ multiplication is defined as composition of maps:\br
++ pi1 * pi2 = pi1 o pi2.\br
++ The internal representation of permuatations are two lists
++ of equal length representing preimages and images.

Permutation(S) : SIG == CODE where
  S : SetCategory

  B        ==> Boolean
  PI       ==> PositiveInteger
  I        ==> Integer
  L        ==> List
  NNI      ==> NonNegativeInteger
  V        ==> Vector
  PT       ==> Partition
  OUTFORM  ==> OutputForm
  RECCYPE  ==> Record(cycl: L L S, permut: %)
  RECPRIM  ==> Record(preimage: L S, image : L S)

  SIG ==> PermutationCategory S with

    listRepresentation : % -> RECPRIM
      ++ listRepresentation(p) produces a representation rep of
      ++ the permutation p as a list of preimages and images, i.e
      ++ p maps (rep.preimage).k to (rep.image).k for all
      ++ indices k. Elements of \spad{S} not in (rep.preimage).k
      ++ are fixed points, and these are the only fixed points of the
      ++ permutation.

    coercePreimagesImages : List List S -> %
      ++ coercePreimagesImages(lls) coerces the representation lls
      ++ of a permutation as a list of preimages and images to a permutation.
      ++ We assume that both preimage and image do not contain repetitions.
      ++ 
      ++X p := coercePreimagesImages([[1,2,3],[1,2,3]])
      ++X q := coercePreimagesImages([[0,1,2,3],[3,0,2,1]])$PERM ZMOD 4

    coerce : List List S -> %
      ++ coerce(lls) coerces a list of cycles lls to a
      ++ permutation, each cycle being a list with no
      ++ repetitions, is coerced to the permutation, which maps
      ++ ls.i to ls.i+1, indices modulo the length of the list,
      ++ then these permutations are mutiplied.
      ++ Error: if repetitions occur in one cycle.

    coerce : List S -> %
      ++ coerce(ls) coerces a cycle ls, a list with not
      ++ repetitions to a permutation, which maps ls.i to
      ++ ls.i+1, indices modulo the length of the list.
      ++ Error: if repetitions occur.

    coerceListOfPairs : List List S -> %
      ++ coerceListOfPairs(lls) coerces a list of pairs lls to a
      ++ permutation.
      ++ Error: if not consistent, the set of the first elements
      ++ coincides with the set of second elements.

    degree : % -> NonNegativeInteger
      ++ degree(p) retuns the number of points moved by the
      ++ permutation p.

    movedPoints : % -> Set S
      ++ movedPoints(p) returns the set of points moved by the permutation p.
      ++ 
      ++X p := coercePreimagesImages([[1,2,3],[1,2,3]])
      ++X movedPoints p

    cyclePartition : % -> Partition
      ++ cyclePartition(p) returns the cycle structure of a permutation
      ++ p including cycles of length 1 only if S is finite.

    order : % -> NonNegativeInteger
      ++ order(p) returns the order of a permutation p as a group element.

    numberOfCycles : % -> NonNegativeInteger
      ++ numberOfCycles(p) returns the number of non-trivial cycles of
      ++ the permutation p.

    sign : % -> Integer
      ++ sign(p) returns the signum of the permutation p, +1 or -1.

    even? : % -> Boolean
      ++ even?(p) returns true if and only if p is an even permutation,
      ++ sign(p) is 1.
      ++ 
      ++X p := coercePreimagesImages([[1,2,3],[1,2,3]])
      ++X even? p

    odd? : % -> Boolean
      ++ odd?(p) returns true if and only if p is an odd permutation
      ++ sign(p) is -1.

    sort : L % -> L %
      ++ sort(lp) sorts a list of permutations lp according to
      ++ cycle structure first according to length of cycles,
      ++ second, if S has \spadtype{Finite} or S has
      ++ \spadtype{OrderedSet} according to lexicographical order of
      ++ entries in cycles of equal length.

    if S has Finite then

      fixedPoints : % -> Set S
        ++ fixedPoints(p) returns the points fixed by the permutation p.
        ++X p := coercePreimagesImages([[0,1,2,3],[3,0,2,1]])$PERM ZMOD 4
        ++X fixedPoints p

    if S has IntegerNumberSystem or S has Finite then

      coerceImages : L S -> %
        ++ coerceImages(ls) coerces the list ls to a permutation
        ++ whose image is given by ls and the preimage is fixed
        ++ to be [1,...,n].
        ++ Note: {coerceImages(ls)=coercePreimagesImages([1,...,n],ls)}.
        ++ We assume that both preimage and image do not contain repetitions.

  CODE ==> add

    -- representation of the object:

    Rep  := V L S

    -- import of domains and packages

    import OutputForm

    import Vector List S

    -- variables

    p,q      : %

    exp      : I

    -- local functions first, signatures:

    smaller? : (S,S) -> B

    rotateCycle: L S -> L S

    coerceCycle: L L S -> %

    smallerCycle?: (L S, L S)  -> B

    shorterCycle?:(L S, L S)  -> B

    permord:(RECCYPE,RECCYPE)  -> B

    coerceToCycle:(%,B) -> L L S

    duplicates?: L S -> B

    smaller?(a:S, b:S): B ==
      S has OrderedSet => a <$S b
      S has Finite     => lookup a < lookup b
      false

    rotateCycle(cyc: L S): L S ==
      -- smallest element is put in first place
      -- doesn't change cycle if underlying set
      -- is not ordered or not finite.
      min:S := first cyc
      minpos:I := 1           -- 1 = minIndex cyc
      for i in 2..maxIndex cyc repeat
        if smaller?(cyc.i,min) then
          min  := cyc.i
          minpos := i
      (minpos = 1) => cyc
      concat(last(cyc,((#cyc-minpos+1)::NNI)),first(cyc,(minpos-1)::NNI))

    coerceCycle(lls : L L S): % ==
      perm : % := 1
      for lists in reverse lls repeat
        perm := cycle lists * perm
      perm

    smallerCycle?(cyca: L S, cycb: L S): B ==
      #cyca ^= #cycb =>
        #cyca < #cycb
      for i in cyca for j in cycb repeat
        i ^= j => return smaller?(i, j)
      false

    shorterCycle?(cyca: L S, cycb: L S): B ==
      #cyca < #cycb

    permord(pa: RECCYPE, pb : RECCYPE): B ==
      for i in pa.cycl for j in pb.cycl repeat
        i ^= j => return smallerCycle?(i, j)
      #pa.cycl < #pb.cycl

    coerceToCycle(p: %, doSorting?: B): L L S ==
      preim := p.1
      im := p.2
      cycles := nil()$(L L S)
      while not null preim repeat
        -- start next cycle
        firstEltInCycle: S := first preim
        nextCycle : L S := list firstEltInCycle
        preim := rest preim
        nextEltInCycle := first im
        im      := rest im
        while nextEltInCycle ^= firstEltInCycle repeat
          nextCycle := cons(nextEltInCycle, nextCycle)
          i := position(nextEltInCycle, preim)
          preim := delete(preim,i)
          nextEltInCycle := im.i
          im := delete(im,i)
        nextCycle := reverse nextCycle
        -- check on 1-cycles, we don't list these
        if not null rest nextCycle then
          if doSorting? and (S has OrderedSet or S has Finite) then
              -- put smallest element in cycle first:
              nextCycle := rotateCycle nextCycle
          cycles := cons(nextCycle, cycles)
      not doSorting? => cycles
      -- sort cycles
      S has OrderedSet or S has Finite =>
        sort(smallerCycle?,cycles)$(L L S)
      sort(shorterCycle?,cycles)$(L L S)

    duplicates? (ls : L S ): B ==
      x := copy ls
      while not null x repeat
        member? (first x ,rest x) => return true
        x := rest x
      false

    -- now the exported functions

    listRepresentation p ==
      s : RECPRIM := [p.1,p.2]

    coercePreimagesImages preImageAndImage ==
      preImage: List S := []
      image: List S := []
      for i in preImageAndImage.1 
        for pi in preImageAndImage.2 repeat
          if i ~= pi then
            preImage := cons(i, preImage)
            image := cons(pi, image)

      [preImage, image]

    movedPoints p == construct p.1

    degree p ==  #movedPoints p

    p = q ==
      #(preimp := p.1) ^= #(preimq := q.1) => false
      for i in 1..maxIndex preimp repeat
        pos := position(preimp.i, preimq)
        pos = 0 => return false
        (p.2).i ^= (q.2).pos => return false
      true

    orbit(p ,el) ==
      -- start with a 1-element list:
      out : Set S := brace list el
      el2 := eval(p, el)
      while el2 ^= el repeat
        -- be carefull: insert adds one element
        -- as side effect to out
        insert_!(el2, out)
        el2 := eval(p, el2)
      out

    cyclePartition p ==
      partition([#c for c in coerceToCycle(p, false)])$Partition

    order p ==
      ord: I := lcm removeDuplicates convert cyclePartition p
      ord::NNI

    sign(p) ==
      even? p => 1
      - 1

    even?(p) ==  even?(#(p.1) - numberOfCycles p)
      -- see the book of James and Kerber on symmetric groups
      -- for this formula.

    odd?(p) ==  odd?(#(p.1) - numberOfCycles p)

    pa < pb ==
      pacyc:= coerceToCycle(pa,true)
      pbcyc:= coerceToCycle(pb,true)
      for i in pacyc for j in pbcyc repeat
        i ^= j => return smallerCycle? ( i, j )
      maxIndex pacyc < maxIndex pbcyc

    coerce(lls : L L S): % == coerceCycle lls

    coerce(ls : L S): % == cycle ls

    sort(inList : L %): L % ==
      not (S has OrderedSet or S has Finite) => inList
      ownList: L RECCYPE := nil()$(L RECCYPE)
      for sigma in inList repeat
        ownList :=
          cons([coerceToCycle(sigma,true),sigma]::RECCYPE, ownList)
      ownList := sort(permord, ownList)$(L RECCYPE)
      outList := nil()$(L %)
      for rec in ownList repeat
        outList := cons(rec.permut, outList)
      reverse outList

    coerce (p: %): OUTFORM ==
      cycles: L L S := coerceToCycle(p,true)
      outfmL : L OUTFORM := nil()
      for cycle in cycles repeat
        outcycL: L OUTFORM := nil()
        for elt in cycle repeat
          outcycL := cons(elt :: OUTFORM, outcycL)
        outfmL := cons(paren blankSeparate reverse outcycL, outfmL)
      -- The identity element will be output as 1:
      null outfmL => outputForm(1@Integer)
      -- represent a single cycle in the form (a b c d)
      -- and not in the form ((a b c d)):
      null rest outfmL => first outfmL
      hconcat reverse outfmL

    cycles(vs ) == coerceCycle vs

    cycle(ls) ==
      #ls < 2 => 1
      duplicates? ls => error "cycle: the input contains duplicates"
      [ls, append(rest ls, list first ls)]

    coerceListOfPairs(loP) ==
      preim := nil()$(L S)
      im := nil()$(L S)
      for pair in loP repeat
        if first pair ^=  second pair then
          preim := cons(first pair, preim)
          im := cons(second pair, im)
      duplicates?(preim) or duplicates?(im) or brace(preim)$(Set S) _
        ^= brace(im)$(Set S) =>
        error "coerceListOfPairs: the input cannot be interpreted as a permutation"
      [preim, im]

    q * p ==
      -- use vectors for efficiency??
      preimOfp : V S := construct p.1
      imOfp : V S := construct p.2
      preimOfq := q.1
      imOfq := q.2
      preimOfqp   := nil()$(L S)
      imOfqp   := nil()$(L S)
      -- 1 = minIndex preimOfp
      for i in 1..(maxIndex preimOfp) repeat
        -- find index of image of p.i in q if it exists
        j := position(imOfp.i, preimOfq)
        if j = 0 then
          -- it does not exist
          preimOfqp := cons(preimOfp.i, preimOfqp)
          imOfqp := cons(imOfp.i, imOfqp)
        else
          -- it exists
          el := imOfq.j
          -- if the composition fixes the element, we don't
          -- have to do anything
          if el ^= preimOfp.i then
            preimOfqp := cons(preimOfp.i, preimOfqp)
            imOfqp := cons(el, imOfqp)
          -- we drop the parts of q which have to do with p
          preimOfq := delete(preimOfq, j)
          imOfq := delete(imOfq, j)
      [append(preimOfqp, preimOfq), append(imOfqp, imOfq)]

    1 == new(2,empty())$Rep

    inv p  == [p.2, p.1]

    eval(p, el) ==
      pos := position(el, p.1)
      pos = 0 => el
      (p.2).pos

    elt(p, el) == eval(p, el)

    numberOfCycles p == #coerceToCycle(p, false)

    if S has IntegerNumberSystem then

      coerceImages (image) ==
        preImage : L S := [i::S for i in 1..maxIndex image]
        coercePreimagesImages [preImage,image]

    if S has Finite then

      coerceImages (image) ==
        preImage : L S := [index(i::PI)::S for i in 1..maxIndex image]
        coercePreimagesImages [preImage,image]

      fixedPoints ( p ) == complement movedPoints p

      cyclePartition p ==
        pt := partition([#c for c in coerceToCycle(p, false)])$Partition
        pt +$PT conjugate(partition([#fixedPoints(p)])$PT)$PT