/usr/share/axiom-20170501/src/algebra/PERMGRP.spad is in axiom-source 20170501-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 | )abbrev domain PERMGRP PermutationGroup
++ Authors: G. Schneider, H. Gollan, J. Grabmeier
++ Date Created: 13 February 1987
++ Date Last Updated: 24 May 1991
++ References:
++ Sims71 Determining the conjugacy classes of a permutation group
++ Description:
++ PermutationGroup implements permutation groups acting
++ on a set S, all subgroups of the symmetric group of S,
++ represented as a list of permutations (generators). Note that
++ therefore the objects are not members of the Axiom category
++ \spadtype{Group}.
++ Using the idea of base and strong generators by Sims,
++ basic routines and algorithms
++ are implemented so that the word problem for
++ permutation groups can be solved.
--++ Note: we plan to implement lattice operations on the subgroup
--++ lattice in a later release
PermutationGroup(S) : SIG == CODE where
S : SetCategory
L ==> List
PERM ==> Permutation
FSET ==> Set
I ==> Integer
NNI ==> NonNegativeInteger
V ==> Vector
B ==> Boolean
OUT ==> OutputForm
SYM ==> Symbol
REC ==> Record ( orb : L NNI , svc : V I )
-- REC holds orbit and Schreier vector
REC2 ==> Record(order:NNI,sgset:L V NNI,_
gpbase:L NNI,orbs:L REC,mp:L S,wd:L L NNI)
-- REC2 holds extra information about group in representation
-- to improve efficiency of some functions.
-- See Rep below for more details.
REC3 ==> Record(elt:V NNI,lst:L NNI)
-- REC3 holds an element and a word
REC4 ==> Record(bool:B,lst:L NNI)
-- REC4 used by 'memberInternal' function to return internal
-- membership testing
SIG ==> SetCategory with
coerce : % -> L PERM S
++ coerce(gp) returns the generators of the group gp.
++
++X x : PERM INT := [[1,3,5],[7,11,9]]
coerce : L PERM S -> %
++ coerce(ls) coerces a list of permutations ls to the group
++ generated by this list.
++
++X y : PERM INT := [[3,5,7,9]]
++X z : PERM INT := [1,3,11]
++X g : PERMGRP INT := [ y , z ]
generators : % -> L PERM S
++ generators(gp) returns the generators of the group gp.
++
++X S:List(Integer) := [1,2,3,4]
++X G := symmetricGroup(S)
++X generators(G)
elt : (%,NNI) -> PERM S
++ elt(gp,i) returns the i-th generator of the group gp.
++
++X S:List(Integer) := [1,2,3,4]
++X G := symmetricGroup(S)
++X G.2
random : (%,I) -> PERM S
++ random(gp,i) returns a random product of maximal i generators
++ of the group gp.
++
++X S:List(Integer) := [1,2,3,4]
++X G := symmetricGroup(S)
++X random(G,2)
random : % -> PERM S
++ random(gp) returns a random product of maximal 20 generators
++ of the group gp.
++ Note: random(gp)=random(gp,20).
++
++X S:List(Integer) := [1,2,3,4]
++X G := symmetricGroup(S)
++X random(G)
order : % -> NNI
++ order(gp) returns the order of the group gp.
++
++X x : PERM INT := [[1,3,5],[7,11,9]]
++X y : PERM INT := [[3,5,7,9]]
++X g : PERMGRP INT := [ x , y ]
++X order g
degree : % -> NNI
++ degree(gp) returns the number of points moved by all permutations
++ of the group gp.
++
++X y : PERM INT := [[3,5,7,9]]
++X z : PERM INT := [1,3,11]
++X g : PERMGRP INT := [ y , z ]
++X degree g
base : % -> L S
++ base(gp) returns a base for the group gp.
++
++X S:List(Integer) := [1,2,3,4]
++X G := symmetricGroup(S)
++X base(G)
strongGenerators : % -> L PERM S
++ strongGenerators(gp) returns strong generators for
++ the group gp.
++
++X S:List(Integer) := [1,2,3,4]
++X G := symmetricGroup(S)
++X strongGenerators(G)
wordsForStrongGenerators : % -> L L NNI
++ wordsForStrongGenerators(gp) returns the words for the strong
++ generators of the group gp in the original generators of
++ gp, represented by their indices in the list, given by
++ generators.
permutationGroup : L PERM S -> %
++ permutationGroup(ls) coerces a list of permutations ls to
++ the group generated by this list.
orbit : (%,S) -> FSET S
++ orbit(gp,el) returns the orbit of the element el under the
++ group gp, the set of all points gained by applying
++ each group element to el.
++
++X S:List(Integer) := [1,2,3,4]
++X G := symmetricGroup(S)
++X orbit(G,[1,2,3])
++X x : PERM INT := [[1,3,5],[7,11,9]]
++X y : PERM INT := [[3,5,7,9]]
++X g : PERMGRP INT := [ x , y ]
++X orbit(g, 3)
orbit : (%,FSET S)-> FSET FSET S
++ orbit(gp,els) returns the orbit of the unordered
++ set els under the group gp.
orbit : (%,L S) -> FSET L S
++ orbit(gp,ls) returns the orbit of the ordered
++ list ls under the group gp.
++ Note: return type is L L S temporarily because FSET L S has an error.
++
++X S:List(Integer) := [1,2,3,4]
++X G := symmetricGroup(S)
++X orbit(G,[1,2,3])
orbits : % -> FSET FSET S
++ orbits(gp) returns the orbits of the group gp,
++ it partitions the (finite) of all moved points.
++
++X y : PERM INT := [[3,5,7,9]]
++X z : PERM INT := [1,3,11]
++X g : PERMGRP INT := [ y , z ]
++X orbits g
member? : (PERM S, %)-> B
++ member?(pp,gp) answers the question, whether the
++ permutation pp is in the group gp or not.
++
++X x : PERM INT := [[1,3,5],[7,11,9]]
++X y : PERM INT := [[3,5,7,9]]
++X z : PERM INT := [1,3,11]
++X g : PERMGRP INT := [ x , z ]
++X member? ( y , g )
wordInStrongGenerators : (PERM S, %)-> L NNI
++ wordInStrongGenerators(p,gp) returns the word for the
++ permutation p in the strong generators of the group gp,
++ represented by the indices of the list, given by strongGenerators.
wordInGenerators : (PERM S, %)-> L NNI
++ wordInGenerators(p,gp) returns the word for the permutation p
++ in the original generators of the group gp,
++ represented by the indices of the list, given by generators.
movedPoints : % -> FSET S
++ movedPoints(gp) returns the points moved by the group gp.
++
++X x : PERM INT := [[1,3,5],[7,11,9]]
++X z : PERM INT := [1,3,11]
++X g : PERMGRP INT := [ x , z ]
++X movedPoints g
"<" : (%,%) -> B
++ gp1 < gp2 returns true if and only if gp1
++ is a proper subgroup of gp2.
"<=" : (%,%) -> B
++ gp1 <= gp2 returns true if and only if gp1
++ is a subgroup of gp2.
++ Note: because of a bug in the parser you have to call this
++ function explicitly by gp1 <=$(PERMGRP S) gp2.
-- (GILT DAS NOCH?)
initializeGroupForWordProblem : % -> Void
++ initializeGroupForWordProblem(gp) initializes the group gp
++ for the word problem.
++ Notes: it calls the other function of this name with parameters
++ 0 and 1: initializeGroupForWordProblem(gp,0,1).
++ Notes: (1) be careful: invoking this routine will destroy the
++ possibly information about your group (but will recompute it again)
++ (2) users need not call this function normally for the soultion of
++ the word problem.
initializeGroupForWordProblem : (%,I,I) -> Void
++ initializeGroupForWordProblem(gp,m,n) initializes the group
++ gp for the word problem.
++ Notes: (1) with a small integer you get shorter words, but the
++ routine takes longer than the standard routine for longer words.
++ (2) be careful: invoking this routine will destroy the possibly stored
++ information about your group (but will recompute it again).
++ (3) users need not call this function normally for the soultion of
++ the word problem.
CODE ==> add
-- Representation of the instance:
-- The 'gens' component completely defines the group as a list
-- of permutations. This is set when the group is constructed.
-- The information component allows some functions to be run
-- more efficiently this data is created, when needed from gens.
-- The parts of the information data are defined as follows:
-- order - Number of elements. Zero means that 'information'
-- data has not yet been computed.
-- sgset - Strong Generators
-- gpbase - sequence of points stabilised by the group.
-- orbs - Describes orbits of base point. The orb part is
-- just list of point on the orbit. The Schreier vector
-- (svc) part allows you to compute element of the group
-- moving given point to base point of the orbit.
-- -2 means point not in orbit,
-- -1 means base point,
-- positive value is index of strong generator moving
-- given point closer to base point.
-- This list of orbits tends to be in a certain order,
-- (corresponding to the order of gpbase)
-- that is, stabiliser of point 1 (if it exists) is first
-- then the other stabilisers, then
-- the final orbit may not stabilise any points.
-- I don't know if this order is required or assumed
-- by any functions.
-- mp - List of elements of S moved by some permutation
-- (needed for mapping between permutations on S and
-- internal representation)
-- wd - Gives representation of strong generators in terms
-- of original generators
Rep := Record ( gens : L PERM S , information : REC2 )
-- import of domains and packages
import Permutation S
import OutputForm
import Symbol
import Void
--first the local variables
sgs : L V NNI := []
baseOfGroup : L NNI := []
sizeOfGroup : NNI := 1
degree : NNI := 0
gporb : L REC := []
out : L L V NNI := []
outword : L L L NNI := []
wordlist : L L NNI := []
basePoint : NNI := 0
newBasePoint : B := true
supp : L S := []
ord : NNI := 1
wordProblem : B := true
--local functions first, signatures:
shortenWord:(L NNI, %)->L NNI
times:(V NNI, V NNI)->V NNI
strip:(V NNI,REC,L V NNI,L L NNI)->REC3
orbitInternal:(%,L S )->L L S
inv: V NNI->V NNI
ranelt:(L V NNI,L L NNI, I)->REC3
testIdentity:V NNI->B
pointList: %->L S
orbitWithSvc:(L V NNI ,NNI )->REC
cosetRep:(NNI ,REC ,L V NNI )->REC3
bsgs1:(L V NNI,NNI,L L NNI,I,%,I)->NNI
computeOrbits: I->L NNI
reduceGenerators: I->Void
bsgs:(%, I, I)->NNI
initialize: %->FSET PERM S
knownGroup?: %->Void
subgroup:(%, %)->B
memberInternal:(PERM S, %, B)->REC4
--local functions first, implementations:
shortenWord ( lw : L NNI , gp : % ) : L NNI ==
-- tries to shorten a word in the generators by removing identities
gpgens : L PERM S := coerce gp
orderList : L NNI := [ order gen for gen in gpgens ]
newlw : L NNI := copy lw
for i in 1.. maxIndex orderList repeat
if orderList.i = 1 then
while member?(i,newlw) repeat
-- removing the trivial element
pos := position(i,newlw)
newlw := delete(newlw,pos)
flag : B := true
while flag repeat
actualLength : NNI := (maxIndex newlw) pretend NNI
pointer := actualLength
test := newlw.pointer
anzahl : NNI := 1
flag := false
while pointer > 1 repeat
pointer := ( pointer - 1 )::NNI
if newlw.pointer ^= test then
-- don't get a trivial element, try next
test := newlw.pointer
anzahl := 1
else
anzahl := anzahl + 1
if anzahl = orderList.test then
-- we have an identity, so remove it
for i in (pointer+anzahl)..actualLength repeat
newlw.(i-anzahl) := newlw.i
newlw := first(newlw, (actualLength - anzahl) :: NNI)
flag := true
pointer := 1
newlw
times ( p : V NNI , q : V NNI ) : V NNI ==
-- internal multiplication of permutations
[ qelt(p,qelt(q,i)) for i in 1..degree ]
strip(element:V NNI,orbit:REC,group:L V NNI,words:L L NNI) : REC3 ==
-- strip an element into the stabilizer
actelt := element
schreierVector := orbit.svc
point := orbit.orb.1
outlist := nil()$(L NNI)
entryLessZero : B := false
while ^entryLessZero repeat
entry := schreierVector.(actelt.point)
entryLessZero := (entry < 0)
if ^entryLessZero then
actelt := times(group.entry, actelt)
if wordProblem then outlist := append( words.(entry::NNI) , outlist )
[ actelt , reverse outlist ]
orbitInternal ( gp : % , startList : L S ) : L L S ==
orbitList : L L S := [ startList ]
pos : I := 1
while not zero? pos repeat
gpset : L PERM S := gp.gens
for gen in gpset repeat
newList := nil()$(L S)
workList := orbitList.pos
for j in #workList..1 by -1 repeat
newList := cons ( eval ( gen , workList.j ) , newList )
if ^member?( newList , orbitList ) then
orbitList := cons ( newList , orbitList )
pos := pos + 1
pos := pos - 1
reverse orbitList
inv ( p : V NNI ) : V NNI ==
-- internal inverse of a permutation
q : V NNI := new(degree,0)$(V NNI)
for i in 1..degree repeat q.(qelt(p,i)) := i
q
ranelt ( group : L V NNI , word : L L NNI , maxLoops : I ) : REC3 ==
-- generate a "random" element
numberOfGenerators := # group
randomInteger : I := 1 + (random()$Integer rem numberOfGenerators)
randomElement : V NNI := group.randomInteger
words := nil()$(L NNI)
if wordProblem then words := word.(randomInteger::NNI)
if maxLoops > 0 then
numberOfLoops : I := 1 + (random()$Integer rem maxLoops)
else
numberOfLoops : I := maxLoops
while numberOfLoops > 0 repeat
randomInteger : I := 1 + (random()$Integer rem numberOfGenerators)
randomElement := times ( group.randomInteger , randomElement )
if wordProblem then words := append( word.(randomInteger::NNI) , words)
numberOfLoops := numberOfLoops - 1
[ randomElement , words ]
testIdentity ( p : V NNI ) : B ==
-- internal test for identity
for i in 1..degree repeat qelt(p,i) ^= i => return false
true
pointList(group : %) : L S ==
support : FSET S := brace() -- empty set !!
for perm in group.gens repeat
support := union(support, movedPoints perm)
parts support
orbitWithSvc ( group : L V NNI , point : NNI ) : REC ==
-- compute orbit with Schreier vector, "-2" means not in the orbit,
-- "-1" means starting point, the PI correspond to generators
newGroup := nil()$(L V NNI)
for el in group repeat
newGroup := cons ( inv el , newGroup )
newGroup := reverse newGroup
orbit : L NNI := [ point ]
schreierVector : V I := new ( degree , -2 )
schreierVector.point := -1
position : I := 1
while not zero? position repeat
for i in 1..#newGroup repeat
newPoint := orbit.position
newPoint := newGroup.i.newPoint
if ^ member? ( newPoint , orbit ) then
orbit := cons ( newPoint , orbit )
position := position + 1
schreierVector.newPoint := i
position := position - 1
[ reverse orbit , schreierVector ]
cosetRep ( point : NNI , o : REC , group : L V NNI ) : REC3 ==
ppt := point
xelt : V NNI := [ n for n in 1..degree ]
word := nil()$(L NNI)
oorb := o.orb
osvc := o.svc
while degree > 0 repeat
p := osvc.ppt
p < 0 => return [ xelt , word ]
x := group.p
xelt := times ( x , xelt )
if wordProblem then word := append ( wordlist.p , word )
ppt := x.ppt
bsgs1 (group:L V NNI,number1:NNI,words:L L NNI,maxLoops:I,gp:%,diff:I)_
: NNI ==
-- try to get a good approximation for the strong generators and base
for i in number1..degree repeat
ort := orbitWithSvc ( group , i )
k := ort.orb
k1 := # k
if k1 ^= 1 then leave
gpsgs := nil()$(L V NNI)
words2 := nil()$(L L NNI)
gplength : NNI := #group
for jj in 1..gplength repeat if (group.jj).i ^= i then leave
for k in 1..gplength repeat
el2 := group.k
if el2.i ^= i then
gpsgs := cons ( el2 , gpsgs )
if wordProblem then words2 := cons ( words.k , words2 )
else
gpsgs := cons ( times ( group.jj , el2 ) , gpsgs )
if wordProblem _
then words2 := cons ( append ( words.jj , words.k ) , words2 )
group2 := nil()$(L V NNI)
words3 := nil()$(L L NNI)
j : I := 15
while j > 0 repeat
-- find generators for the stabilizer
ran := ranelt ( group , words , maxLoops )
str := strip ( ran.elt , ort , group , words )
el2 := str.elt
if ^ testIdentity el2 then
if ^ member?(el2,group2) then
group2 := cons ( el2 , group2 )
if wordProblem then
help : L NNI := append ( reverse str.lst , ran.lst )
help := shortenWord ( help , gp )
words3 := cons ( help , words3 )
j := j - 2
j := j - 1
-- this is for word length control
if wordProblem then maxLoops := maxLoops - diff
if ( null group2 ) or ( maxLoops < 0 ) then
sizeOfGroup := k1
baseOfGroup := [ i ]
out := [ gpsgs ]
outword := [ words2 ]
return sizeOfGroup
k2 := bsgs1 ( group2 , i + 1 , words3 , maxLoops , gp , diff )
sizeOfGroup := k1 * k2
out := append ( out , [ gpsgs ] )
outword := append ( outword , [ words2 ] )
baseOfGroup := cons ( i , baseOfGroup )
sizeOfGroup
computeOrbits ( kkk : I ) : L NNI ==
-- compute the orbits for the stabilizers
sgs := nil()
orbitLength := nil()$(L NNI)
gporb := nil()
for i in 1..#baseOfGroup repeat
sgs := append ( sgs , out.i )
pt := #baseOfGroup - i + 1
obs := orbitWithSvc ( sgs , baseOfGroup.pt )
orbitLength := cons ( #obs.orb , orbitLength )
gporb := cons ( obs , gporb )
gporb := reverse gporb
reverse orbitLength
reduceGenerators ( kkk : I ) : Void ==
-- try to reduce number of strong generators
orbitLength := computeOrbits ( kkk )
sgs := nil()
wordlist := nil()
for i in 1..(kkk-1) repeat
sgs := append ( sgs , out.i )
if wordProblem then wordlist := append ( wordlist , outword.i )
removedGenerator := false
baseLength : NNI := #baseOfGroup
for nnn in kkk..(baseLength-1) repeat
sgs := append ( sgs , out.nnn )
if wordProblem then wordlist := append ( wordlist , outword.nnn )
pt := baseLength - nnn + 1
obs := orbitWithSvc ( sgs , baseOfGroup.pt )
i := 1
while not ( i > # out.nnn ) repeat
pos := position ( out.nnn.i , sgs )
sgs2 := delete(sgs, pos)
obs2 := orbitWithSvc ( sgs2 , baseOfGroup.pt )
if # obs2.orb = orbitLength.nnn then
test := true
for j in (nnn+1)..(baseLength-1) repeat
pt2 := baseLength - j + 1
sgs2 := append ( sgs2 , out.j )
obs2 := orbitWithSvc ( sgs2 , baseOfGroup.pt2 )
if # obs2.orb ^= orbitLength.j then
test := false
leave
if test then
removedGenerator := true
sgs := delete (sgs, pos)
if wordProblem then wordlist := delete(wordlist, pos)
out.nnn := delete (out.nnn, i)
if wordProblem then _
outword.nnn := delete(outword.nnn, i )
else
i := i + 1
else
i := i + 1
if removedGenerator then orbitLength := computeOrbits ( kkk )
void()
bsgs ( group : % ,maxLoops : I , diff : I ) : NNI ==
-- the MOST IMPORTANT part of the package
supp := pointList group
degree := # supp
if degree = 0 then
sizeOfGroup := 1
sgs := [ [ 0 ] ]
baseOfGroup := nil()
gporb := nil()
return sizeOfGroup
newGroup := nil()$(L V NNI)
gp : L PERM S := group.gens
words := nil()$(L L NNI)
for ggg in 1..#gp repeat
q := new(degree,0)$(V NNI)
for i in 1..degree repeat
newEl := eval ( gp.ggg , supp.i )
pos2 := position ( newEl , supp )
q.i := pos2 pretend NNI
newGroup := cons ( q , newGroup )
if wordProblem then words := cons(list ggg, words)
if maxLoops < 1 then
-- try to get the (approximate) base length
if zero? (# ((group.information).gpbase)) then
wordProblem := false
k := bsgs1 ( newGroup , 1 , words , 20 , group , 0 )
wordProblem := true
maxLoops := (# baseOfGroup) - 1
else
maxLoops := (# ((group.information).gpbase)) - 1
k := bsgs1 ( newGroup , 1 , words , maxLoops , group , diff )
kkk : I := 1
newGroup := reverse newGroup
noAnswer : B := true
while noAnswer repeat
reduceGenerators kkk
-- *** Here is former "bsgs2" *** --
-- test whether we have a base and a strong generating set
sgs := nil()
wordlist := nil()
for i in 1..(kkk-1) repeat
sgs := append ( sgs , out.i )
if wordProblem then wordlist := append ( wordlist , outword.i )
noresult : B := true
for i in kkk..#baseOfGroup while noresult repeat
sgs := append ( sgs , out.i )
if wordProblem then wordlist := append ( wordlist , outword.i )
gporbi := gporb.i
for pt in gporbi.orb while noresult repeat
ppp := cosetRep ( pt , gporbi , sgs )
y1 := inv ppp.elt
word3 := ppp.lst
for jjj in 1..#sgs while noresult repeat
word := nil()$(L NNI)
z := times ( sgs.jjj , y1 )
if wordProblem then word := append ( wordlist.jjj , word )
ppp := cosetRep ( (sgs.jjj).pt , gporbi , sgs )
z := times ( ppp.elt , z )
if wordProblem then word := append ( ppp.lst , word )
newBasePoint := false
for j in (i-1)..1 by -1 while noresult repeat
s := gporb.j.svc
p := gporb.j.orb.1
while ( degree > 0 ) and noresult repeat
entry := s.(z.p)
if entry < 0 then
if entry = -1 then leave
basePoint := j::NNI
noresult := false
else
ee := sgs.entry
z := times ( ee , z )
if wordProblem then word := append( wordlist.entry , word )
if noresult then
basePoint := 1
newBasePoint := true
noresult := testIdentity z
noAnswer := not (testIdentity z)
if noAnswer then
-- we have missed something
word2 := nil()$(L NNI)
if wordProblem then
for wd in word3 repeat
ttt := newGroup.wd
while not (testIdentity ttt) repeat
word2 := cons ( wd , word2 )
ttt := times ( ttt , newGroup.wd )
word := append ( word , word2 )
word := shortenWord ( word , group )
if newBasePoint then
for i in 1..degree repeat
if z.i ^= i then
baseOfGroup := append ( baseOfGroup , [ i ] )
leave
out := cons (list z, out )
if wordProblem then outword := cons (list word , outword )
else
out.basePoint := cons ( z , out.basePoint )
if wordProblem then _
outword.basePoint := cons(word ,outword.basePoint )
kkk := basePoint
sizeOfGroup := 1
for j in 1..#baseOfGroup repeat
sizeOfGroup := sizeOfGroup * # gporb.j.orb
sizeOfGroup
initialize ( group : % ) : FSET PERM S ==
group2 := brace()$(FSET PERM S)
gp : L PERM S := group.gens
for gen in gp repeat
if degree gen > 0 then insert_!(gen, group2)
group2
knownGroup? (gp : %) : Void ==
-- do we know the group already?
result := gp.information
if result.order = 0 then
wordProblem := false
ord := bsgs ( gp , 20 , 0 )
result := [ ord , sgs , baseOfGroup , gporb , supp , [] ]
gp.information := result
else
ord := result.order
sgs := result.sgset
baseOfGroup := result.gpbase
gporb := result.orbs
supp := result.mp
wordlist := result.wd
void
subgroup ( gp1 : % , gp2 : % ) : B ==
gpset1 := initialize gp1
gpset2 := initialize gp2
empty? difference (gpset1, gpset2) => true
for el in parts gpset1 repeat
not member? (el, gp2) => return false
true
memberInternal ( p : PERM S , gp : % , flag : B ) : REC4 ==
-- internal membership testing
supp := pointList gp
outlist := nil()$(L NNI)
mP : L S := parts movedPoints p
for x in mP repeat
not member? (x, supp) => return [ false , nil()$(L NNI) ]
if flag then
member? ( p , gp.gens ) => return [ true , nil()$(L NNI) ]
knownGroup? gp
else
result := gp.information
if #(result.wd) = 0 then
initializeGroupForWordProblem gp
else
ord := result.order
sgs := result.sgset
baseOfGroup := result.gpbase
gporb := result.orbs
supp := result.mp
wordlist := result.wd
degree := # supp
pp := new(degree,0)$(V NNI)
for i in 1..degree repeat
el := eval ( p , supp.i )
pos := position ( el , supp )
pp.i := pos::NNI
words := nil()$(L L NNI)
if wordProblem then
for i in 1..#sgs repeat
lw : L NNI := [ (#sgs - i + 1)::NNI ]
words := cons ( lw , words )
for i in #baseOfGroup..1 by -1 repeat
str := strip ( pp , gporb.i , sgs , words )
pp := str.elt
if wordProblem then outlist := append ( outlist , str.lst )
[ testIdentity pp , reverse outlist ]
--now the exported functions
coerce ( gp : % ) : L PERM S == gp.gens
generators ( gp : % ) : L PERM S == gp.gens
strongGenerators ( group ) ==
knownGroup? group
degree := # supp
strongGens := nil()$(L PERM S)
for i in sgs repeat
pairs := nil()$(L L S)
for j in 1..degree repeat
pairs := cons ( [ supp.j , supp.(i.j) ] , pairs )
strongGens := cons ( coerceListOfPairs pairs , strongGens )
reverse strongGens
elt ( gp , i ) == (gp.gens).i
movedPoints ( gp ) == brace pointList gp
random ( group , maximalNumberOfFactors ) ==
maximalNumberOfFactors < 1 => 1$(PERM S)
gp : L PERM S := group.gens
numberOfGenerators := # gp
randomInteger : I := 1 + (random()$Integer rem numberOfGenerators)
randomElement := gp.randomInteger
numberOfLoops : I := 1 + (random()$Integer rem maximalNumberOfFactors)
while numberOfLoops > 0 repeat
randomInteger : I := 1 + (random()$Integer rem numberOfGenerators)
randomElement := gp.randomInteger * randomElement
numberOfLoops := numberOfLoops - 1
randomElement
random ( group ) == random ( group , 20 )
order ( group ) ==
knownGroup? group
ord
degree ( group ) == # pointList group
base ( group ) ==
knownGroup? group
groupBase := nil()$(L S)
for i in baseOfGroup repeat
groupBase := cons ( supp.i , groupBase )
reverse groupBase
wordsForStrongGenerators ( group ) ==
knownGroup? group
wordlist
coerce ( gp : L PERM S ) : % ==
result : REC2 := [ 0 , [] , [] , [] , [] , [] ]
group := [ gp , result ]
permutationGroup ( gp : L PERM S ) : % ==
result : REC2 := [ 0 , [] , [] , [] , [] , [] ]
group := [ gp , result ]
coerce(group: %) : OUT ==
outList := nil()$(L OUT)
gp : L PERM S := group.gens
for i in (maxIndex gp)..1 by -1 repeat
outList := cons(coerce gp.i, outList)
postfix(outputForm(">":SYM),_
postfix(commaSeparate outList,outputForm("<":SYM)))
orbit ( gp : % , el : S ) : FSET S ==
elList : L S := [ el ]
outList := orbitInternal ( gp , elList )
outSet := brace()$(FSET S)
for i in 1..#outList repeat
insert_! ( outList.i.1 , outSet )
outSet
orbits ( gp ) ==
spp := movedPoints gp
orbits := nil()$(L FSET S)
while cardinality spp > 0 repeat
el := extract_! spp
orbitSet := orbit ( gp , el )
orbits := cons ( orbitSet , orbits )
spp := difference ( spp , orbitSet )
brace orbits
member? (p, gp) ==
wordProblem := false
mi := memberInternal ( p , gp , true )
mi.bool
wordInStrongGenerators (p, gp ) ==
mi := memberInternal ( inv p , gp , false )
not mi.bool => error "p is not an element of gp"
mi.lst
wordInGenerators (p, gp) ==
lll : L NNI := wordInStrongGenerators (p, gp)
outlist := nil()$(L NNI)
for wd in lll repeat
outlist := append ( outlist , wordlist.wd )
shortenWord ( outlist , gp )
gp1 < gp2 ==
not empty? difference ( movedPoints gp1 , movedPoints gp2 ) => false
not subgroup ( gp1 , gp2 ) => false
order gp1 = order gp2 => false
true
gp1 <= gp2 ==
not empty? difference ( movedPoints gp1 , movedPoints gp2 ) => false
subgroup ( gp1 , gp2 )
gp1 = gp2 ==
movedPoints gp1 ^= movedPoints gp2 => false
if #(gp1.gens) <= #(gp2.gens) then
not subgroup ( gp1 , gp2 ) => return false
else
not subgroup ( gp2 , gp1 ) => return false
order gp1 = order gp2 => true
false
orbit ( gp : % , startSet : FSET S ) : FSET FSET S ==
startList : L S := parts startSet
outList := orbitInternal ( gp , startList )
outSet := brace()$(FSET FSET S)
for i in 1..#outList repeat
newSet : FSET S := brace outList.i
insert_! ( newSet , outSet )
outSet
orbit ( gp : % , startList : L S ) : FSET L S ==
brace orbitInternal(gp, startList)
initializeGroupForWordProblem ( gp , maxLoops , diff ) ==
wordProblem := true
ord := bsgs ( gp , maxLoops , diff )
gp.information := [ ord , sgs , baseOfGroup , gporb , supp , wordlist ]
void
initializeGroupForWordProblem ( gp ) ==
initializeGroupForWordProblem ( gp , 0 , 1 )
|