This file is indexed.

/usr/share/axiom-20170501/src/algebra/PFBR.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
)abbrev package PFBR PolynomialFactorizationByRecursion
++ Description: 
++ PolynomialFactorizationByRecursion(R,E,VarSet,S)
++ is used for factorization of sparse univariate polynomials over
++ a domain S of multivariate polynomials over R.

PolynomialFactorizationByRecursion(R,E, VarSet, S) : SIG == CODE where
  R : PolynomialFactorizationExplicit
  E : OrderedAbelianMonoidSup
  VarSet : OrderedSet
  S : PolynomialCategory(R,E,VarSet)

  PI ==> PositiveInteger
  SupR ==> SparseUnivariatePolynomial R
  SupSupR ==> SparseUnivariatePolynomial SupR
  SupS ==> SparseUnivariatePolynomial S
  SupSupS ==> SparseUnivariatePolynomial SupS
  LPEBFS ==> LinearPolynomialEquationByFractions(S)

  SIG ==> with

    solveLinearPolynomialEquationByRecursion : (List SupS, SupS)  ->
                                                Union(List SupS,"failed")
      ++ \spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)}
      ++ returns the list of polynomials \spad{[q1,...,qn]}
      ++ such that \spad{sum qi/pi = p / prod pi}, a
      ++ recursion step for solveLinearPolynomialEquation
      ++ as defined in \spadfun{PolynomialFactorizationExplicit} category
      ++ (see \spadfun{solveLinearPolynomialEquation}).
      ++ If no such list of qi exists, then "failed" is returned.

    factorByRecursion :  SupS -> Factored SupS
      ++ factorByRecursion(p) factors polynomial p. This function
      ++ performs the recursion step for factorPolynomial,
      ++ as defined in \spadfun{PolynomialFactorizationExplicit} category
      ++ (see \spadfun{factorPolynomial})

    factorSquareFreeByRecursion : SupS -> Factored SupS
      ++ factorSquareFreeByRecursion(p) returns the square free
      ++ factorization of p. This functions performs
      ++ the recursion step for factorSquareFreePolynomial,
      ++ as defined in \spadfun{PolynomialFactorizationExplicit} category
      ++ (see \spadfun{factorSquareFreePolynomial}).

    randomR : -> R  -- has to be global, since has alternative definitions
      ++ randomR produces a random element of R

    bivariateSLPEBR : (List SupS, SupS,  VarSet)  -> Union(List SupS,"failed")
      ++ bivariateSLPEBR(lp,p,v) implements
      ++ the bivariate case of solveLinearPolynomialEquationByRecursion
      ++ its implementation depends on R

    factorSFBRlcUnit : (List VarSet, SupS) -> Factored SupS
      ++ factorSFBRlcUnit(p) returns the square free factorization of
      ++ polynomial p
      ++ (see \spadfun{factorSquareFreeByRecursion}
      ++ {PolynomialFactorizationByRecursionUnivariate})
      ++ in the case where the leading coefficient of p
      ++ is a unit.

  CODE ==> add

   supR: SparseUnivariatePolynomial R
   pp: SupS
   lpolys,factors: List SupS
   vv:VarSet
   lvpolys,lvpp: List VarSet
   r:R
   lr:List R
   import FactoredFunctionUtilities(SupS)
   import FactoredFunctions2(S,SupS)
   import FactoredFunctions2(SupR,SupS)
   import CommuteUnivariatePolynomialCategory(S,SupS, SupSupS)
   import UnivariatePolynomialCategoryFunctions2(S,SupS,SupS,SupSupS)
   import UnivariatePolynomialCategoryFunctions2(SupS,SupSupS,S,SupS)
   import UnivariatePolynomialCategoryFunctions2(S,SupS,R,SupR)
   import UnivariatePolynomialCategoryFunctions2(R,SupR,S,SupS)
   import UnivariatePolynomialCategoryFunctions2(S,SupS,SupR,SupSupR)
   import UnivariatePolynomialCategoryFunctions2(SupR,SupSupR,S,SupS)
   hensel: (SupS,VarSet,R,List SupS) ->
           Union(Record(fctrs:List SupS),"failed")
   chooseSLPEViableSubstitutions: (List VarSet,List SupS,SupS) ->
    Record(substnsField:List R,lpolysRField:List SupR,ppRField:SupR)
     --++ chooseSLPEViableSubstitutions(lv,lp,p) chooses substitutions
     --++ for the variables in first arg (which are all
     --++ the variables that exist) so that the polys in second argument don't
     --++ drop in degree and remain square-free, and third arg doesn't drop
     --++ drop in degree
   chooseFSQViableSubstitutions: (List VarSet,SupS) ->
    Record(substnsField:List R,ppRField:SupR)
     --++ chooseFSQViableSubstitutions(lv,p) chooses substitutions 
     --++ for the variables in first arg (which are all
     --++ the variables that exist) so that the second argument poly doesn't
     --++ drop in degree and remains square-free
   raise: SupR -> SupS
   lower: SupS -> SupR

   SLPEBR: (List SupS, List VarSet, SupS, List VarSet)  ->
                                         Union(List SupS,"failed")

   factorSFBRlcUnitInner: (List VarSet, SupS,R) ->
                                         Union(Factored SupS,"failed")

   hensel(pp,vv,r,factors) ==
      origFactors:=factors
      totdegree:Integer:=0
      proddegree:Integer:=
                   "max"/[degree(u,vv) for u in coefficients pp]
      n:PI:=1
      prime:=vv::S - r::S
      foundFactors:List SupS:=empty()
      while (totdegree <= proddegree) repeat
          pn:=prime**n
          Ecart:=(pp-*/factors) exquo  pn
          Ecart case "failed" =>
                error "failed lifting in hensel in PFBR"
          zero? Ecart =>
             -- then we have all the factors
             return [append(foundFactors, factors)]
          step:=solveLinearPolynomialEquation(origFactors,
                                              map(z1 +-> eval(z1,vv,r),
                                                  Ecart))
          step case "failed" => return "failed" -- must be a false split
          factors:=[a+b*pn for a in factors for b in step]
          for a in factors for c in origFactors repeat
              pp1:= pp exquo a
              pp1 case "failed" => "next"
              pp:=pp1
              proddegree := proddegree - "max"/[degree(u,vv)
                                                for u in coefficients a]
              factors:=remove(a,factors)
              origFactors:=remove(c,origFactors)
              foundFactors:=[a,:foundFactors]
          #factors < 2 =>
             return [(empty? factors => foundFactors;
                                     [pp,:foundFactors])]
          totdegree:= +/["max"/[degree(u,vv)
                                for u in coefficients u1]
                         for u1 in factors]
          n:=n+1
      "failed" -- must have been a false split

   factorSFBRlcUnitInner(lvpp,pp,r) ==
      -- pp is square-free as a Sup, and its coefficients have precisely
      -- the variables of lvpp. Furthermore, its LC is a unit
      -- returns "failed" if the substitution is bad, else a factorization
      ppR:=map(z1 +-> eval(z1,first lvpp,r),pp)
      degree ppR < degree pp => "failed"
      degree gcd(ppR,differentiate ppR) >0 => "failed"
      factors:=
         empty? rest lvpp =>
            fDown:=factorSquareFreePolynomial map(z1 +-> retract(z1)::R,ppR)
            [raise (unit fDown * factorList(fDown).first.fctr),
             :[raise u.fctr for u in factorList(fDown).rest]]
         fSame:=factorSFBRlcUnit(rest lvpp,ppR)
         [unit fSame * factorList(fSame).first.fctr,
          :[uu.fctr for uu in factorList(fSame).rest]]
      #factors = 1 => makeFR(1,[["irred",pp,1]])
      hen:=hensel(pp,first lvpp,r,factors)
      hen case "failed" => "failed"
      makeFR(1,[["irred",u,1] for u in hen.fctrs])

   if R has StepThrough then

     factorSFBRlcUnit(lvpp,pp) ==
       val:R := init()
       while true repeat
          tempAns:=factorSFBRlcUnitInner(lvpp,pp,val)
          not (tempAns case "failed") => return tempAns
          val1:=nextItem val
          val1 case "failed" =>
            error "at this point, we know we have a finite field"
          val:=val1

   else

     factorSFBRlcUnit(lvpp,pp) ==
       val:R := randomR()
       while true repeat
          tempAns:=factorSFBRlcUnitInner(lvpp,pp,val)
          not (tempAns case "failed") => return tempAns
          val := randomR()

   if R has random: -> R then

      randomR() == random()

   else 

      randomR() == (random()$Integer)::R

   if R has FiniteFieldCategory then

     bivariateSLPEBR(lpolys,pp,v) ==
       lpolysR:List SupSupR:=[map(univariate,u) for u in lpolys]
       ppR: SupSupR:=map(univariate,pp)
       ans:=solveLinearPolynomialEquation(lpolysR,ppR)$SupR
       ans case "failed" => "failed"
       [map(z1 +-> multivariate(z1,v),w) for w in ans]

   else

     bivariateSLPEBR(lpolys,pp,v) ==
       solveLinearPolynomialEquationByFractions(lpolys,pp)$LPEBFS

   chooseFSQViableSubstitutions(lvpp,pp) ==
     substns:List R
     ppR: SupR
     while true repeat
        substns:= [randomR() for v in lvpp]
        zero? eval(leadingCoefficient pp,lvpp,substns ) => "next"
        ppR:=map(z1 +->(retract eval(z1,lvpp,substns))::R,pp)
        degree gcd(ppR,differentiate ppR)>0 => "next"
        leave
     [substns,ppR]

   chooseSLPEViableSubstitutions(lvpolys,lpolys,pp) ==
     substns:List R
     lpolysR:List SupR
     ppR: SupR
     while true repeat
        substns:= [randomR() for v in lvpolys]
        zero? eval(leadingCoefficient pp,lvpolys,substns ) => "next"
        "or"/[zero? eval(leadingCoefficient u,lvpolys,substns)
                    for u in lpolys] => "next"
        lpolysR:=[map(z1 +-> (retract eval(z1,lvpolys,substns))::R,u)
                  for u in lpolys]
        uu:=lpolysR
        while not empty? uu repeat
          "or"/[ degree(gcd(uu.first,v))>0 for v in uu.rest] => leave
          uu:=rest uu
        not empty? uu => "next"
        leave
     ppR:=map(z1 +-> (retract eval(z1,lvpolys,substns))::R,pp)
     [substns,lpolysR,ppR]

   raise(supR) == map(z1 +-> z1:R::S,supR)

   lower(pp) == map(z1 +-> retract(z1)::R,pp)

   SLPEBR(lpolys,lvpolys,pp,lvpp) ==
     not empty? (m:=setDifference(lvpp,lvpolys)) =>
         v:=first m
         lvpp:=remove(v,lvpp)
         pp1:SupSupS :=swap map(z1 +-> univariate(z1,v),pp)
         -- pp1 is mathematically equal to pp, but is in S[z][v]
         -- so we wish to operate on all of its coefficients
         ans:List SupSupS:= [0 for u in lpolys]
         for m in reverse_! monomials pp1 repeat
             ans1:=SLPEBR(lpolys,lvpolys,leadingCoefficient m,lvpp)
             ans1 case "failed" => return "failed"
             d:=degree m
             ans:=[monomial(a1,d)+a for a in ans for a1 in ans1]
         [map(z1 +-> multivariate(z1,v),swap pp1) for pp1 in ans]
     empty? lvpolys =>
         lpolysR:List SupR
         ppR:SupR
         lpolysR:=[map(retract,u) for u in lpolys]
         ppR:=map(retract,pp)
         ansR:=solveLinearPolynomialEquation(lpolysR,ppR)
         ansR case "failed" => return "failed"
         [map(z1 +-> z1::S,uu) for uu in ansR]
     cVS:=chooseSLPEViableSubstitutions(lvpolys,lpolys,pp)
     ansR:=solveLinearPolynomialEquation(cVS.lpolysRField,cVS.ppRField)
     ansR case "failed" => "failed"
     #lvpolys = 1 => bivariateSLPEBR(lpolys,pp, first lvpolys)
     solveLinearPolynomialEquationByFractions(lpolys,pp)$LPEBFS

   solveLinearPolynomialEquationByRecursion(lpolys,pp) ==
     lvpolys := removeDuplicates_!
                  concat [ concat [variables z for z in coefficients u]
                                               for u in lpolys]
     lvpp := removeDuplicates_!
                concat [variables z for z in coefficients pp]
     SLPEBR(lpolys,lvpolys,pp,lvpp)

   factorByRecursion pp ==
     lv:List(VarSet) := removeDuplicates_!
                           concat [variables z for z in coefficients pp]
     empty? lv =>
         map(raise,factorPolynomial lower pp)
     c:=content pp
     unit? c => refine(squareFree pp,factorSquareFreeByRecursion)
     pp:=(pp exquo c)::SupS
     mergeFactors(refine(squareFree pp,factorSquareFreeByRecursion),
                  map(z1 +-> z1:S::SupS,factor(c)$S))

   factorSquareFreeByRecursion pp ==
     lv:List(VarSet) := removeDuplicates_!
                           concat [variables z for z in coefficients pp]
     empty? lv =>
         map(raise,factorPolynomial lower pp)
     unit? (lcpp := leadingCoefficient pp) => factorSFBRlcUnit(lv,pp)
     oldnfact:NonNegativeInteger:= 999999
                       -- I hope we never have to factor a polynomial
                       -- with more than this number of factors
     lcppPow:S
     while true repeat
       cVS:=chooseFSQViableSubstitutions(lv,pp)
       factorsR:=factorSquareFreePolynomial(cVS.ppRField)
       (nfact:=numberOfFactors factorsR) = 1 =>
                  return makeFR(1,[["irred",pp,1]])
       -- OK, force all leading coefficients to be equal to the leading
       -- coefficient of the input
       nfact > oldnfact => "next"   -- can't be a good reduction
       oldnfact:=nfact
       factors:=[(lcpp exquo leadingCoefficient u.fctr)::S * raise u.fctr
                  for u in factorList factorsR]
       ppAdjust:=(lcppPow:=lcpp**#(rest factors)) * pp
       lvppList:=lv
       OK:=true
       for u in lvppList for v in cVS.substnsField repeat
           hen:=hensel(ppAdjust,u,v,factors)
           hen case "failed" =>
               OK:=false
               "leave"
           factors:=hen.fctrs
       OK => leave
     factors:=[ (lc:=content w;
                 lcppPow:=(lcppPow exquo lc)::S;
                  (w exquo lc)::SupS)
                for w in factors]
     not unit? lcppPow =>
         error "internal error in factorSquareFreeByRecursion"
     makeFR((recip lcppPow)::S::SupS,
             [["irred",w,1] for w in factors])