This file is indexed.

/usr/share/axiom-20170501/src/algebra/PFO.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
)abbrev package PFO PointsOfFiniteOrder
++ Author: Manuel Bronstein
++ Date Created: 1988
++ Date Last Updated: 22 July 1998
++ Description:
++ This package provides function for testing whether a divisor on a
++ curve is a torsion divisor.

PointsOfFiniteOrder(R0, F, UP, UPUP, R) : SIG == CODE where
  R0 : Join(OrderedSet, IntegralDomain, RetractableTo Integer)
  F : FunctionSpace R0
  UP : UnivariatePolynomialCategory F
  UPUP : UnivariatePolynomialCategory Fraction UP
  R : FunctionFieldCategory(F, UP, UPUP)

  PI  ==> PositiveInteger
  N   ==> NonNegativeInteger
  Z   ==> Integer
  Q   ==> Fraction Integer
  UPF ==> SparseUnivariatePolynomial F
  UPQ ==> SparseUnivariatePolynomial Q
  QF  ==> Fraction UP
  UPUPQ ==> SparseUnivariatePolynomial Fraction UPQ
  UP2 ==> SparseUnivariatePolynomial UPQ
  UP3 ==> SparseUnivariatePolynomial UP2
  FD  ==> FiniteDivisor(F, UP, UPUP, R)
  K   ==> Kernel F
  REC ==> Record(ncurve:UP3, disc:Z, dfpoly:UPQ)
  RC0 ==> Record(ncurve:UPUPQ, disc:Z)
  ID  ==> FractionalIdeal(UP, QF, UPUP, R)
  SMP ==> SparseMultivariatePolynomial(R0,K)
  ALGOP  ==> "%alg"

  SIG ==> with

    order : FD -> Union(N, "failed")
      ++ order(f) \undocumented

    torsion? : FD -> Boolean
      ++ torsion?(f) \undocumented

    torsionIfCan : FD -> Union(Record(order:N, function:R), "failed")
      ++ torsionIfCan(f)\ undocumented

  CODE ==> add

    import IntegerPrimesPackage(Z)
    import PointsOfFiniteOrderTools(UPQ, UPUPQ)
    import UnivariatePolynomialCommonDenominator(Z, Q, UPQ)

    cmult: List SMP -> SMP
    raise         : (UPQ, K) -> F
    raise2        : (UP2, K) -> UP
    qmod          : F     -> Q
    fmod          : UPF   -> UPQ
    rmod          : UP    -> UPQ
    pmod          : UPUP  -> UPUPQ
    kqmod         : (F,    K) -> UPQ
    krmod         : (UP,   K) -> UP2
    kpmod         : (UPUP, K) -> UP3
    selectIntegers: K   -> REC
    selIntegers:    ()  -> RC0
    possibleOrder : FD -> N
    ratcurve      : (FD, RC0)    -> N
    algcurve      : (FD, REC, K) -> N
    kbad3Num      : (UP3, UPQ) -> Z
    kbadBadNum    : (UP2, UPQ) -> Z
    kgetGoodPrime : (REC, UPQ, UP3, UP2,UP2) -> Record(prime:PI,poly:UPQ)
    goodRed       : (REC, UPQ, UP3, UP2, UP2, PI) -> Union(UPQ, "failed")
    good?         : (UPQ, UP3, UP2, UP2, PI, UPQ) -> Boolean
    klist         : UP -> List K
    aklist        : R  -> List K
    alglist       : FD -> List K
    notIrr?       : UPQ -> Boolean
    rat           : (UPUP, FD, PI) -> N
    toQ1          : (UP2, UPQ) -> UP
    toQ2          : (UP3, UPQ) -> R
    Q2F           : Q -> F
    Q2UPUP        : UPUPQ -> UPUP

    q := FunctionSpaceReduce(R0, F)

    torsion? d == order(d) case N

    Q2F x      == numer(x)::F / denom(x)::F

    qmod x     == bringDown(x)$q

    kqmod(x,k) == bringDown(x, k)$q

    fmod p     == map(qmod, p)$SparseUnivariatePolynomialFunctions2(F, Q)

    pmod p     == map(qmod, p)$MultipleMap(F, UP, UPUP, Q, UPQ, UPUPQ)

    Q2UPUP p   == map(Q2F, p)$MultipleMap(Q, UPQ, UPUPQ, F, UP, UPUP)

    klist d    == "setUnion"/[kernels c for c in coefficients d]

    notIrr? d  == #(factors factor(d)$RationalFactorize(UPQ)) > 1

    kbadBadNum(d, m) == mix [badNum(c rem m) for c in coefficients d]

    kbad3Num(h, m)   == lcm [kbadBadNum(c, m) for c in coefficients h]
    
    torsionIfCan d ==
      zero?(n := possibleOrder(d := reduce d)) => "failed"
      (g := generator reduce(n::Z * d)) case "failed" => "failed"
      [n, g::R]

    UPQ2F(p:UPQ, k:K):F ==
      map(Q2F, p)$UnivariatePolynomialCategoryFunctions2(Q, UPQ, F, UP) (k::F)

    UP22UP(p:UP2, k:K):UP ==
      map((p1:UPQ):F +-> UPQ2F(p1, k), p)_
        $UnivariatePolynomialCategoryFunctions2(UPQ,UP2,F,UP)

    UP32UPUP(p:UP3, k:K):UPUP ==
      map((p1:UP2):QF +-> UP22UP(p1,k)::QF,p)_
        $UnivariatePolynomialCategoryFunctions2(UP2, UP3, QF, UPUP)

    if R0 has GcdDomain then

       cmult(l:List SMP):SMP == lcm l

    else

       cmult(l:List SMP):SMP == */l

    doubleDisc(f:UP3):Z ==
      d := discriminant f
      g := gcd(d, differentiate d)
      d := (d exquo g)::UP2
      zero?(e := discriminant d) => 0
      gcd [retract(c)@Z for c in coefficients e]

    commonDen(p:UP):SMP ==
      l1:List F := coefficients p
      l2:List SMP := [denom c for c in l1]
      cmult l2

    polyred(f:UPUP):UPUP ==
      cmult([commonDen(retract(c)@UP) for c in coefficients f])::F::UP::QF * f

    aklist f ==
      (r := retractIfCan(f)@Union(QF, "failed")) case "failed" =>
        "setUnion"/[klist(retract(c)@UP) for c in coefficients lift f]
      klist(retract(r::QF)@UP)

    alglist d ==
      n := numer(i := ideal d)
      select_!((k1:K):Boolean +-> has?(operator k1, ALGOP),
          setUnion(klist denom i,
            "setUnion"/[aklist qelt(n,i) for i in minIndex n..maxIndex n]))

    krmod(p,k) ==
       map(z1 +-> kqmod(z1, k),
           p)$UnivariatePolynomialCategoryFunctions2(F, UP, UPQ, UP2)

    rmod p ==
       map(qmod, p)$UnivariatePolynomialCategoryFunctions2(F, UP, Q, UPQ)

    raise(p, k) ==
      (map(Q2F, p)$SparseUnivariatePolynomialFunctions2(Q, F)) (k::F)

    raise2(p, k) ==
      map(z1 +-> raise(z1, k),
          p)$UnivariatePolynomialCategoryFunctions2(UPQ, UP2, F, UP)

    algcurve(d, rc, k) ==
      mn := minIndex(n := numer(i := minimize ideal d))
      h  := kpmod(lift(hh := n(mn + 1)), k)
      b2 := primitivePart
                 raise2(b := krmod(retract(retract(n.mn)@QF)@UP, k), k)
      s  := kqmod(resultant(primitivePart separate(raise2(krmod(
                    retract(norm hh)@UP, k), k), b2).primePart, b2), k)
      pr := kgetGoodPrime(rc, s, h, b, dd := krmod(denom i, k))
      p  := pr.prime
      pp := UP32UPUP(rc.ncurve, k)
      mm := pr.poly
      gf := InnerPrimeField p
      m  := map((z1:Q):gf +-> retract(z1)@Z :: gf,mm)_
              $SparseUnivariatePolynomialFunctions2(Q, gf)
      (degree m = 1) =>
        alpha := - coefficient(m, 0) / leadingCoefficient m
        order(d, pp,
           (z1:F):gf +-> (map((q1:Q):gf +-> numer(q1)::gf / denom(q1)::gf,
            kqmod(z1,k))$SparseUnivariatePolynomialFunctions2(Q,gf))(alpha)
                                   )$ReducedDivisor(F, UP, UPUP, R, gf)
      sae:= SimpleAlgebraicExtension(gf,SparseUnivariatePolynomial gf,m)
      order(d, pp,
        (z1:F):sae +-> reduce(map((q1:Q):gf +-> numer(q1)::gf / denom(q1)::gf,
            kqmod(z1,k))$SparseUnivariatePolynomialFunctions2(Q,gf))$sae
                                   )$ReducedDivisor(F, UP, UPUP, R, sae)

    -- returns the potential order of d, 0 if d is of infinite order
    ratcurve(d, rc) ==
      mn  := minIndex(nm := numer(i := minimize ideal d))
      h   := pmod lift(hh := nm(mn + 1))
      b   := rmod(retract(retract(nm.mn)@QF)@UP)
      s   := separate(rmod(retract(norm hh)@UP), b).primePart
      bd  := badNum rmod denom i
      r   := resultant(s, b)
      bad := lcm [rc.disc, numer r,denom r, bd.den*bd.gcdnum, badNum h]$List(Z)
      pp  := Q2UPUP(rc.ncurve)
      n   := rat(pp, d, p := getGoodPrime bad)
      -- if n > 1 then it's cheaper to compute the order modulo a second prime,
      -- since computing n * d could be very expensive
      (n = 1) => n
      m   := rat(pp, d, getGoodPrime(p * bad))
      n = m => n
      0

    -- returns the order of d mod p
    rat(pp, d, p) ==
      gf := InnerPrimeField p
      order(d, pp, 
        (q1:F):gf +-> (qq := qmod q1;numer(qq)::gf / denom(qq)::gf)
                                    )$ReducedDivisor(F, UP, UPUP, R, gf)

    -- returns the potential order of d, 0 if d is of infinite order
    possibleOrder d ==
      zero?(genus()) or (#(numer ideal d) = 1) => 1
      empty?(la := alglist d) => ratcurve(d, selIntegers())
      not(empty? rest la) =>
           error "PFO::possibleOrder: more than 1 algebraic constant"
      algcurve(d, selectIntegers first la, first la)

    selIntegers():RC0 ==
      f := definingPolynomial()$R
      while zero?(d := doubleDisc(r := polyred pmod f)) repeat newReduc()$q
      [r, d]

    selectIntegers(k:K):REC ==
      g := polyred(f := definingPolynomial()$R)
      p := minPoly k
      while zero?(d := doubleDisc(r := kpmod(g, k))) or (notIrr? fmod p)
          repeat newReduc()$q
      [r, d, splitDenominator(fmod p).num]

    toQ1(p, d) ==
      map((p1:UPQ):F +-> Q2F(retract(p1 rem d)@Q),
          p)$UnivariatePolynomialCategoryFunctions2(UPQ, UP2, F, UP)

    toQ2(p, d) ==
      reduce map((p1:UP2):QF +-> toQ1(p1, d)::QF,
        p)$UnivariatePolynomialCategoryFunctions2(UP2, UP3, QF, UPUP)

    kpmod(p, k) ==
      map((p1:QF):UP2 +-> krmod(retract(p1)@UP, k),
        p)$UnivariatePolynomialCategoryFunctions2(QF, UPUP, UP2, UP3)

    order d ==
      zero?(n := possibleOrder(d := reduce d)) => "failed"
      principal? reduce(n::Z * d) => n
      "failed"

    kgetGoodPrime(rec, res, h, b, d) ==
      p:PI := 3
      while (u := goodRed(rec, res, h, b, d, p)) case "failed" repeat
        p := nextPrime(p::Z)::PI
      [p, u::UPQ]

    goodRed(rec, res, h, b, d, p) ==
      zero?(rec.disc rem p) => "failed"
      gf := InnerPrimeField p
      l  := [f.factor for f in factors 
             factor(map((z1:Q):gf +-> retract(z1)@Z :: gf,
               rec.dfpoly)$SparseUnivariatePolynomialFunctions2(Q,
                 gf))$DistinctDegreeFactorize(gf,
                   SparseUnivariatePolynomial gf) | (f.exponent = 1)]
      empty? l => "failed"
      mdg := first l
      for ff in rest l repeat
        if degree(ff) < degree(mdg) then mdg := ff
      md := map((z1:gf):Q +-> convert(z1)@Z :: Q,
                 mdg)$SparseUnivariatePolynomialFunctions2(gf, Q)
      good?(res, h, b, d, p, md) => md
      "failed"

    good?(res, h, b, d, p, m) ==
      bd := badNum(res rem m)
      not (zero?(bd.den rem p) or zero?(bd.gcdnum rem p) or
        zero?(kbadBadNum(b,m) rem p) or zero?(kbadBadNum(d,m) rem p)
              or zero?(kbad3Num(h, m) rem p))