This file is indexed.

/usr/share/axiom-20170501/src/algebra/PFORP.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
)abbrev package PFORP PackageForPoly
++ Author: Gaetan Hache
++ Date Created: 17 nov 1992
++ Date Last Updated: May 2010 by Tim Daly
++ Description:  
++ The following is part of the PAFF package

PackageForPoly(R,PolyRing,E,dim) : SIG == CODE where
  R : Ring -- was Field but change for SolveTree package. 21/01/98 )
  dim : NonNegativeInteger
  E : DirectProductCategory(dim,NonNegativeInteger)
  PolyRing : FiniteAbelianMonoidRing(R,E) 

  Term ==> Record(k:E,c:R)
  PI   ==> PositiveInteger
  NNI  ==> NonNegativeInteger
  INT  ==> Integer

  SIG ==> with

    mapExponents : (E->E, PolyRing) -> PolyRing
      
    degree : (PolyRing , Integer) -> NNI
      
    univariate : PolyRing -> SparseUnivariatePolynomial(R)
      
    totalDegree : PolyRing -> NNI
      
    subs1stVar : (PolyRing , PolyRing) -> PolyRing
      
    subs2ndVar : (PolyRing , PolyRing) -> PolyRing
      
    subsInVar : (PolyRing, PolyRing, Integer) -> PolyRing
      
    minimalForm : PolyRing -> PolyRing
      ++ minimalForm(pol) returns the minimal forms of the polynomial pol.

    firstExponent : PolyRing -> E
      ++ firstExponent(pol) returns the exponent of the first term in the 
      ++ representation of pol. Not to be confused with the leadingExponent
      ++  which is the highest exponent according to the order
      ++ over the monomial.

    replaceVarByZero : (PolyRing,Integer) -> PolyRing
      ++ replaceVarByZero(pol,a) evaluate to zero the variable in pol 
      ++ specified by the integer a.

    replaceVarByOne : (PolyRing,Integer) -> PolyRing
      ++ replaceVarByOne(pol,a) evaluate to one the variable in pol 
      ++ specified by the integer a.

    translate : (PolyRing,List R,Integer) -> PolyRing
      ++ translate(pol,[a,b,c],3) apply to pol the
      ++ linear change of coordinates, x->x+a, y->y+b, z->1.

    translate : (PolyRing,List R) -> PolyRing
      ++ translate(pol,[a,b,c]) apply to pol the
      ++ linear change of coordinates, x->x+a, y->y+b, z->z+c

    degOneCoef : (PolyRing,PI) -> R
      ++ degOneCoef(pol,n) returns the coefficient in front of the monomial
      ++ specified by the positive integer.

    constant : PolyRing -> R
      ++ constant(pol) returns the constant term of the polynomial.

    homogenize : (PolyRing,INT) -> PolyRing
      ++ homogenize(pol,n) returns the homogenized polynomial of pol 
      ++ with respect to the n-th variable.

    listAllMonoExp : Integer -> List E
      ++ listAllMonoExp(l) returns all the exponents of degree l

    listAllMono : NNI -> List PolyRing
      ++ listAllMono(l) returns all the monomials of degree l

    degreeOfMinimalForm : PolyRing -> NNI
      ++ degreeOfMinimalForm does what it says

    listVariable : () -> List PolyRing
      
    monomials : PolyRing -> List PolyRing
      
  CODE ==> add

      import PolyRing

      monomials(pol)==
        zero? pol => empty()
        lt:=leadingMonomial pol
        cons( lt , monomials reductum pol )

      lll: Integer -> E
      lll(i) == 
        le:=new( dim , 0$NNI)$List(NNI)
        le.i := 1
        directProduct( vector(le)$Vector(NNI) )$E

      listVariable== 
        [monomial(1,ee)$PolyRing for ee in [lll(i) for i in 1..dim]]

      univariate(pol)==
        zero? pol => 0
        d:=degree pol
        lc:=leadingCoefficient pol
        td := reduce("+", entries d)
        monomial(lc,td)$SparseUnivariatePolynomial(R)+univariate(reductum pol)
      
      collectExpon: List Term -> PolyRing

      translateLocal: (PolyRing,List R,Integer) -> PolyRing

      lA: (Integer,Integer) -> List List NNI

      toListRep: PolyRing -> List Term

      exponentEntryToZero: (E,Integer) -> E

      exponentEntryZero?: (E,Integer) -> Boolean

      homogenizeExp: (E,NNI,INT) -> E

      translateMonomial: (PolyRing,List R,INT,R) -> PolyRing

      leadingTerm: PolyRing -> Term

      mapExponents(f,pol)==
        zero?(pol) => 0
        lt:=leadingTerm pol
        newExp:E:= f(lt.k)
        newMono:PolyRing:= monomial(lt.c,newExp)$PolyRing
        newMono + mapExponents(f,reductum pol)
        
      collectExpon(pol)==
        empty? pol => 0
        ft:=first pol
        monomial(ft.c,ft.k) + collectExpon( rest pol )

      subs1stVar(pol, spol)==
        zero? pol => 0
        lexpE:E:= degree pol
        lexp:List NNI:= parts lexpE
        coef:= leadingCoefficient pol 
        coef * spol ** lexp.1  * second(listVariable())**lexp.2 _
           + subs1stVar( reductum pol, spol )

      subs2ndVar(pol, spol)==
        zero? pol => 0
        lexpE:E:= degree pol
        lexp:List NNI:= parts lexpE
        coef:= leadingCoefficient pol 
        coef * first(listVariable())**lexp.1   *  spol ** lexp.2 _
           + subs2ndVar( reductum pol, spol )

      subsInVar( pol, spol, n)==
        one?( n ) => subs1stVar( pol, spol)
        subs2ndVar(pol,spol) 

      translate(pol,lpt)==        
        zero? pol => 0
        lexpE:E:= degree pol
        lexp:List NNI:= parts lexpE
        coef:= leadingCoefficient pol 
        trVar:=[(listVariable().i + (lpt.i)::PolyRing)**lexp.i for i in 1..dim]
        coef * reduce("*",trVar,1) + translate(reductum pol , lpt)

      translate(poll,lpt,nV)==
        pol:=replaceVarByOne(poll,nV)
        translateLocal(pol,lpt,nV)

      translateLocal(pol,lpt,nV)==
        zero?(pol) => 0
        lll:List R:=[l for l in lpt | ^zero?(l)]
        nbOfNonZero:=# lll
        ltk:=leadingMonomial pol
        ltc:=leadingCoefficient pol
        if one?(nbOfNonZero) then
          pol
        else
          translateMonomial(ltk,lpt,nV,ltc) + _
           translateLocal(reductum(pol),lpt,nV)

      exponentEntryToZero(exp,nV)==
        pexp:= parts exp
        pexp(nV):=0
        directProduct(vector(pexp)$Vector(NonNegativeInteger))

      exponentEntryZero?(exp,nV)==
        pexp:= parts exp
        zero?(pexp(nV))

      replaceVarByZero(pol,nV)==
        -- surement le collectExpon ici n'est pas necessaire  !!!!
        zero?(pol) => 0        
        lRep:=        toListRep pol
        reduce("+",_
               [monomial(p.c,p.k)$PolyRing _
                 for p in lRep | exponentEntryZero?(p.k,nV) ],0)

      replaceVarByOne(pol,nV)==
        zero?(pol) => 0        
        lRep:=        toListRep pol
        reduce("+",_
         [monomial(p.c,exponentEntryToZero(p.k,nV))$PolyRing for p in lRep],0)

      homogenizeExp(exp,deg,nV)==
        lv:List NNI:=parts(exp)
        lv.nV:=(deg+lv.nV - reduce("+",lv)) pretend NNI
        directProduct(vector(lv)$Vector(NNI))$E

      listTerm: PolyRing -> List E
      listTerm(pol)==
        zero? pol => empty
        cons( degree pol,  listTerm reductum pol )

      degree( a : PolyRing , n : Integer )==
        zero? a => error "Degree for 0 is not defined for this degree fnc"
        "max" / [ ee.n for ee in listTerm a ]

      totalDegree p ==
         zero? p => 0
         "max"/[reduce("+",t::(Vector NNI), 0) for t in listTerm p]

      homogenize(pol,nV)==
        degP:=totalDegree(pol)
        mapExponents(homogenizeExp(#1,degP,nV),pol)

      degOneCoef(p:PolyRing,i:PI)==
        vv:=new(dim,0)$Vector(NNI)
        vv.i:=1
        pd:=directProduct(vv)$E
        lp:=toListRep p
        lc:=[t.c for t in lp | t.k=pd]
        reduce("+",lc,0)

      constant(p)==
        vv:=new(dim,0)$Vector(NNI)
        pd:=directProduct(vv)$E
        lp:=toListRep p
        lc:=[t.c for t in lp | t.k=pd]
        reduce("+",lc,0)

      degreeOfMinimalForm(pol)==
        totalDegree minimalForm pol

      minimalForm(pol)==
        zero?(pol) => pol
        lpol:=toListRep pol
        actTerm:Term:=  first lpol
        minDeg:NNI:=reduce("+", parts(actTerm.k))
        actDeg:NNI
        lminForm:List(Term):= [actTerm]
        for p in rest(lpol) repeat
          actDeg:= reduce("+", parts(p.k))
          if actDeg = minDeg then
            lminForm := concat(lminForm,p)
          if actDeg < minDeg then
            minDeg:=actDeg
            lminForm:=[p]
        collectExpon lminForm

    -- le code de collectExponSort a ete emprunte a D. Augot.
      
      leadingTerm(pol)==
        zero?(pol) => error "no leading term for 0  (message from package)"
        lcoef:R:=leadingCoefficient(pol)$PolyRing
        lterm:PolyRing:=leadingMonomial(pol)$PolyRing
        tt:E:=degree(lterm)$PolyRing
        [tt,lcoef]$Term
        
      toListRep(pol)==
        zero?(pol) => empty()
        lt:=leadingTerm pol
        cons(lt, toListRep reductum pol)  

      lA(n,l)==
        zero?(n) => [new((l pretend NNI),0)$List(NNI)]
        one?(l) => [[(n pretend NNI)]]
        concat [[ concat([i],lll) for lll in lA(n-i,l-1)] for i in 0..n]

      listAllMonoExp(l)==
        lst:=lA(l,(dim pretend Integer))
        [directProduct(vector(pexp)$Vector(NNI)) for pexp in lst]

      translateMonomial(mono,pt,nV,coef)==
        lexpE:E:= degree mono
        lexp:List NNI:= parts lexpE
        lexp(nV):=0 
        trVar:=[(listVariable().i + (pt.i)::PolyRing)** lexp.i for i in 1..dim]
        coef * reduce("*",trVar,1)

      listAllMono(l)==
        [monomial(1,e)$PolyRing for e in listAllMonoExp(l)]