/usr/share/axiom-20170501/src/algebra/PFR.spad is in axiom-source 20170501-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 | )abbrev domain PFR PartialFraction
++ Author: Robert S. Sutor
++ Date Created: 1986
++ Change History: 05/20/91 BMT Converted to the new library
++ Description:
++ The domain \spadtype{PartialFraction} implements partial fractions
++ over a euclidean domain \spad{R}. This requirement on the
++ argument domain allows us to normalize the fractions. Of
++ particular interest are the 2 forms for these fractions. The
++ ``compact'' form has only one fractional term per prime in the
++ denominator, while the ``p-adic'' form expands each numerator
++ p-adically via the prime p in the denominator. For computational
++ efficiency, the compact form is used, though the p-adic form may
++ be gotten by calling the function padicFraction}. For a
++ general euclidean domain, it is not known how to factor the
++ denominator. Thus the function partialFraction takes as its
++ second argument an element of \spadtype{Factored(R)}.
PartialFraction(R) : SIG == CODE where
R : EuclideanDomain
FRR ==> Factored R
SUPR ==> SparseUnivariatePolynomial R
SIG ==> Join(Field, Algebra R) with
coerce : % -> Fraction R
++ coerce(p) sums up the components of the partial fraction and
++ returns a single fraction.
++
++X a:=(13/74)::PFR(INT)
++X a::FRAC(INT)
coerce : Fraction FRR -> %
++ coerce(f) takes a fraction with numerator and denominator in
++ factored form and creates a partial fraction. It is
++ necessary for the parts to be factored because it is not
++ known in general how to factor elements of \spad{R} and
++ this is needed to decompose into partial fractions.
++
++X (13/74)::PFR(INT)
compactFraction : % -> %
++ compactFraction(p) normalizes the partial fraction \spad{p}
++ to the compact representation. In this form, the partial
++ fraction has only one fractional term per prime in the
++ denominator.
++
++X a:=partialFraction(1,factorial 10)
++X b:=padicFraction(a)
++X compactFraction(b)
firstDenom : % -> FRR
++ firstDenom(p) extracts the denominator of the first fractional
++ term. This returns 1 if there is no fractional part (use
++ wholePart from PartialFraction to get the whole part).
++
++X a:=partialFraction(1,factorial 10)
++X firstDenom(a)
firstNumer : % -> R
++ firstNumer(p) extracts the numerator of the first fractional
++ term. This returns 0 if there is no fractional part (use
++ wholePart from PartialFraction to get the whole part).
++
++X a:=partialFraction(1,factorial 10)
++X firstNumer(a)
nthFractionalTerm : (%,Integer) -> %
++ nthFractionalTerm(p,n) extracts the nth fractional term from
++ the partial fraction \spad{p}. This returns 0 if the index
++ \spad{n} is out of range.
++
++X a:=partialFraction(1,factorial 10)
++X b:=padicFraction(a)
++X nthFractionalTerm(b,3)
numberOfFractionalTerms : % -> Integer
++ numberOfFractionalTerms(p) computes the number of fractional
++ terms in \spad{p}. This returns 0 if there is no fractional
++ part.
++
++X a:=partialFraction(1,factorial 10)
++X b:=padicFraction(a)
++X numberOfFractionalTerms(b)
padicallyExpand : (R,R) -> SUPR
++ padicallyExpand(p,x) is a utility function that expands
++ the second argument \spad{x} ``p-adically'' in
++ the first.
padicFraction : % -> %
++ padicFraction(q) expands the fraction p-adically in the primes
++ \spad{p} in the denominator of \spad{q}. For example,
++ \spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}.
++ Use compactFraction from PartialFraction to
++ return to compact form.
++
++X a:=partialFraction(1,factorial 10)
++X padicFraction(a)
partialFraction : (R, FRR) -> %
++ partialFraction(numer,denom) is the main function for
++ constructing partial fractions. The second argument is the
++ denominator and should be factored.
++
++X partialFraction(1,factorial 10)
wholePart : % -> R
++ wholePart(p) extracts the whole part of the partial fraction
++ \spad{p}.
++
++X a:=(74/13)::PFR(INT)
++X wholePart(a)
CODE ==> add
-- some constructor assignments and macros
Ex ==> OutputForm
fTerm ==> Record(num: R, den: FRR) -- den should have
-- unit = 1 and only
-- 1 factor
LfTerm ==> List Record(num: R, den: FRR)
QR ==> Record(quotient: R, remainder: R)
Rep := Record(whole:R, fract: LfTerm)
-- private function signatures
copypf: % -> %
LessThan: (fTerm, fTerm) -> Boolean
multiplyFracTerms: (fTerm, fTerm) -> %
normalizeFracTerm: fTerm -> %
partialFractionNormalized: (R, FRR) -> %
-- declarations
a,b: %
n: Integer
r: R
-- private function definitions
copypf(a: %): % == [a.whole,copy a.fract]$%
LessThan(s: fTerm, t: fTerm) ==
-- have to wait until FR has < operation
if (GGREATERP(s.den,t.den)$Lisp : Boolean) then false
else true
multiplyFracTerms(s : fTerm, t : fTerm) ==
nthFactor(s.den,1) = nthFactor(t.den,1) =>
normalizeFracTerm([s.num * t.num, s.den * t.den]$fTerm) : Rep
i : Union(Record(coef1: R, coef2: R),"failed")
coefs : Record(coef1: R, coef2: R)
i := extendedEuclidean(expand t.den, expand s.den,s.num * t.num)
i case "failed" => error "PartialFraction: not in ideal"
coefs := (i :: Record(coef1: R, coef2: R))
c : % := copypf 0$%
d : %
if coefs.coef2 ^= 0$R then
c := normalizeFracTerm ([coefs.coef2, t.den]$fTerm)
if coefs.coef1 ^= 0$R then
d := normalizeFracTerm ([coefs.coef1, s.den]$fTerm)
c.whole := c.whole + d.whole
not (null d.fract) => c.fract := append(d.fract,c.fract)
c
normalizeFracTerm(s : fTerm) ==
-- makes sure num is "less than" den, whole may be non-zero
qr : QR := divide(s.num, (expand s.den))
qr.remainder = 0$R => [qr.quotient, nil()$LfTerm]
-- now verify num and den are coprime
f : R := nthFactor(s.den,1)
nexpon : Integer := nthExponent(s.den,1)
expon : Integer := 0
q : QR := divide(qr.remainder, f)
while (q.remainder = 0$R) and (expon < nexpon) repeat
expon := expon + 1
qr.remainder := q.quotient
q := divide(qr.remainder,f)
expon = 0 => [qr.quotient,[[qr.remainder, s.den]$fTerm]$LfTerm]
expon = nexpon => (qr.quotient + qr.remainder) :: %
[qr.quotient,[[qr.remainder, nilFactor(f,nexpon-expon)]$fTerm]$LfTerm]
partialFractionNormalized(nm: R, dn : FRR) ==
-- assume unit dn = 1
nm = 0$R => 0$%
dn = 1$FRR => nm :: %
qr : QR := divide(nm, expand dn)
c : % := [0$R,[[qr.remainder,
nilFactor(nthFactor(dn,1), nthExponent(dn,1))]$fTerm]$LfTerm]
d : %
for i in 2..numberOfFactors(dn) repeat
d :=
[0$R,[[1$R,nilFactor(nthFactor(dn,i),_
nthExponent(dn,i))]$fTerm]$LfTerm]
c := c * d
(qr.quotient :: %) + c
-- public function definitions
padicFraction(a : %) ==
b: % := compactFraction a
null b.fract => b
l : LfTerm := nil
s : fTerm
f : R
e,d: Integer
for s in b.fract repeat
e := nthExponent(s.den,1)
e = 1 => l := cons(s,l)
f := nthFactor(s.den,1)
d := degree(sp := padicallyExpand(f,s.num))
while (sp ^= 0$SUPR) repeat
l := cons([leadingCoefficient sp,nilFactor(f,e-d)]$fTerm, l)
d := degree(sp := reductum sp)
[b.whole, sort(LessThan,l)]$%
compactFraction(a : %) ==
-- only one power for each distinct denom will remain
2 > # a.fract => a
af : LfTerm := reverse a.fract
bf : LfTerm := nil
bw : R := a.whole
b : %
s : fTerm := [(first af).num,(first af).den]$fTerm
f : R := nthFactor(s.den,1)
e : Integer := nthExponent(s.den,1)
t : fTerm
for t in rest af repeat
f = nthFactor(t.den,1) =>
s.num := s.num + (t.num *
(f **$R ((e - nthExponent(t.den,1)) : NonNegativeInteger)))
b := normalizeFracTerm s
bw := bw + b.whole
if not (null b.fract) then bf := cons(first b.fract,bf)
s := [t.num, t.den]$fTerm
f := nthFactor(s.den,1)
e := nthExponent(s.den,1)
b := normalizeFracTerm s
[bw + b.whole,append(b.fract,bf)]$%
0 == [0$R, nil()$LfTerm]
1 == [1$R, nil()$LfTerm]
characteristic() == characteristic()$R
coerce(r): % == [r, nil()$LfTerm]
coerce(n): % == [(n :: R), nil()$LfTerm]
coerce(a): Fraction R ==
q : Fraction R := (a.whole :: Fraction R)
s : fTerm
for s in a.fract repeat
q := q + (s.num / (expand s.den))
q
coerce(q: Fraction FRR): % ==
u : R := (recip unit denom q):: R
r1 : R := u * expand numer q
partialFractionNormalized(r1, u * denom q)
a exquo b ==
b = 0$% => "failed"
b = 1$% => a
br : Fraction R := inv (b :: Fraction R)
a * partialFraction(numer br,(denom br) :: FRR)
recip a == (1$% exquo a)
firstDenom a == -- denominator of 1st fractional term
null a.fract => 1$FRR
(first a.fract).den
firstNumer a == -- numerator of 1st fractional term
null a.fract => 0$R
(first a.fract).num
numberOfFractionalTerms a == # a.fract
nthFractionalTerm(a,n) ==
l : LfTerm := a.fract
(n < 1) or (n > # l) => 0$%
[0$R,[l.n]$LfTerm]$%
wholePart a == a.whole
partialFraction(nm: R, dn : FRR) ==
nm = 0$R => 0$%
-- move inv unit of den to numerator
u : R := unit dn
u := (recip u) :: R
partialFractionNormalized(u * nm,u * dn)
padicallyExpand(p : R, r : R) ==
-- expands r as a sum of powers of p, with coefficients
-- r = HornerEval(padicallyExpand(p,r),p)
qr : QR := divide(r, p)
qr.quotient = 0$R => qr.remainder :: SUPR
(qr.remainder :: SUPR) + monomial(1$R,1$NonNegativeInteger)$SUPR *
padicallyExpand(p,qr.quotient)
a = b ==
a.whole ^= b.whole => false -- must verify this
(null a.fract) =>
null b.fract => a.whole = b.whole
false
null b.fract => false
-- oh, no! following is temporary
(a :: Fraction R) = (b :: Fraction R)
- a ==
s: fTerm
l: LfTerm := nil
for s in reverse a.fract repeat l := cons([- s.num,s.den]$fTerm,l)
[- a.whole,l]
r * a ==
r = 0$R => 0$%
r = 1$R => a
b : % := (r * a.whole) :: %
c : %
s : fTerm
for s in reverse a.fract repeat
c := normalizeFracTerm [r * s.num, s.den]$fTerm
b.whole := b.whole + c.whole
not (null c.fract) => b.fract := append(c.fract, b.fract)
b
n * a == (n :: R) * a
a + b ==
compactFraction
[a.whole + b.whole,
sort(LessThan,append(a.fract,copy b.fract))]$%
a * b ==
null a.fract => a.whole * b
null b.fract => b.whole * a
af : % := [0$R, a.fract]$% -- a - a.whole
c: % := (a.whole * b) + (b.whole * af)
s,t : fTerm
for s in a.fract repeat
for t in b.fract repeat
c := c + multiplyFracTerms(s,t)
c
coerce(a): Ex ==
null a.fract => a.whole :: Ex
s : fTerm
l : List Ex
if a.whole = 0 then l := nil else l := [a.whole :: Ex]
for s in a.fract repeat
s.den = 1$FRR => l := cons(s.num :: Ex, l)
l := cons(s.num :: Ex / s.den :: Ex, l)
# l = 1 => first l
reduce("+", reverse l)
|