This file is indexed.

/usr/share/axiom-20170501/src/algebra/PFRPAC.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
)abbrev package PFRPAC PartialFractionPackage
++ Author: Barry M. Trager
++ Date Created: 1992
++ Description:
++ The package \spadtype{PartialFractionPackage} gives an easier
++ to use interfact the domain \spadtype{PartialFraction}.
++ The user gives a fraction of polynomials, and a variable and
++ the package converts it to the proper datatype for the
++ \spadtype{PartialFraction} domain.

PartialFractionPackage(R) : SIG == CODE where
  R : Join(EuclideanDomain, CharacteristicZero)

  FPR ==> Fraction Polynomial R
  INDE ==> IndexedExponents Symbol
  PR ==> Polynomial R
  SUP ==> SparseUnivariatePolynomial

  SIG ==> with

    partialFraction : (FPR, Symbol) -> Any
      ++ partialFraction(rf, var) returns the partial fraction decomposition
      ++ of the rational function rf with respect to the variable var.
      ++
      ++X a:=x+1/(y+1)
      ++X partialFraction(a,y)$PFRPAC(INT)

    partialFraction : (PR, Factored PR, Symbol) -> Any
      ++ partialFraction(num, facdenom, var) returns the partial fraction
      ++ decomposition of the rational function whose numerator is num and
      ++ whose factored denominator is facdenom with respect to the 
      ++ variable var.

  CODE ==> add

    partialFraction(rf, v) ==
      df := factor(denom rf)$MultivariateFactorize(Symbol, INDE,R,PR)
      partialFraction(numer rf, df, v)

    makeSup(p:Polynomial R, v:Symbol) : SparseUnivariatePolynomial FPR ==
      up := univariate(p,v)
      map((z1:PR):FPR +-> z1::FPR,up)_
        $UnivariatePolynomialCategoryFunctions2(PR, SUP PR, FPR, SUP FPR)

    partialFraction(p, facq, v) ==
      up := UnivariatePolynomial(v, Fraction Polynomial R)
      fup := Factored up
      ffact : List(Record(irr:up,pow:Integer))
      ffact:=[[makeSup(u.factor,v) pretend up,u.exponent]
                   for u in factors facq]
      fcont:=makeSup(unit facq,v) pretend up
      nflist:fup := fcont*(*/[primeFactor(ff.irr,ff.pow) for ff in ffact])
      pfup:=partialFraction(makeSup(p,v) pretend up,nflist)$PartialFraction(up)
      coerce(pfup)$AnyFunctions1(PartialFraction up)