/usr/share/axiom-20170501/src/algebra/PGROEB.spad is in axiom-source 20170501-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 | )abbrev package PGROEB PolyGroebner
++ Author: P. Gianni
++ Date Created: Summer 1988
++ References:
++ Normxx Notes 13: How to Compute a Groebner Basis
++ Coxx07 Ideals, varieties and algorithms
++ Description:
++ Groebner functions for P F
++ This package is an interface package to the groebner basis
++ package which allows you to compute groebner bases for polynomials
++ in either lexicographic ordering or total degree ordering refined
++ by reverse lex. The input is the ordinary polynomial type which
++ is internally converted to a type with the required ordering.
++ The resulting grobner basis is converted back to ordinary polynomials.
++ The ordering among the variables is controlled by an explicit list
++ of variables which is passed as a second argument. The coefficient
++ domain is allowed to be any gcd domain, but the groebner basis is
++ computed as if the polynomials were over a field.
PolyGroebner(F) : SIG == CODE where
F : GcdDomain
NNI ==> NonNegativeInteger
P ==> Polynomial F
L ==> List
E ==> Symbol
SIG ==> with
lexGroebner : (L P,L E) -> L P
++ lexGroebner(lp,lv) computes Groebner basis
++ for the list of polynomials lp in lexicographic order.
++ The variables are ordered by their position in the list lv.
++
++X lexGroebner([2*x^2+y, 2*y^2+x],[x,y])
totalGroebner : (L P, L E) -> L P
++ totalGroebner(lp,lv) computes Groebner basis
++ for the list of polynomials lp with the terms
++ ordered first by total degree and then
++ refined by reverse lexicographic ordering.
++ The variables are ordered by their position in the list lv.
++
++X totalGroebner([2*x^2+y, 2*y^2+x],[x,y])
CODE ==> add
lexGroebner(lp: L P,lv:L E) : L P ==
PP:= PolToPol(lv,F)
DPoly := DistributedMultivariatePolynomial(lv,F)
DP:=DirectProduct(#lv,NNI)
OV:=OrderedVariableList lv
b:L DPoly:=[pToDmp(pol)$PP for pol in lp]
gb:L DPoly :=groebner(b)$GroebnerPackage(F,DP,OV,DPoly)
[dmpToP(pp)$PP for pp in gb]
totalGroebner(lp: L P,lv:L E) : L P ==
PP:= PolToPol(lv,F)
HDPoly := HomogeneousDistributedMultivariatePolynomial(lv,F)
HDP:=HomogeneousDirectProduct(#lv,NNI)
OV:=OrderedVariableList lv
b:L HDPoly:=[pToHdmp(pol)$PP for pol in lp]
gb:=groebner(b)$GroebnerPackage(F,HDP,OV,HDPoly)
[hdmpToP(pp)$PP for pp in gb]
|