/usr/share/axiom-20170501/src/algebra/PLEQN.spad is in axiom-source 20170501-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 | )abbrev package PLEQN ParametricLinearEquations
++ Author: William Sit, spring 89
++ Description:
++ This package completely solves a parametric linear system of equations
++ by decomposing the set of all parametric values for which the linear
++ system is consistent into a union of quasi-algebraic sets (which need
++ not be irredundant, but most of the time is). Each quasi-algebraic
++ set is described by a list of polynomials that vanish on the set, and
++ a list of polynomials that vanish at no point of the set.
++ For each quasi-algebraic set, the solution of the linear system
++ is given, as a particular solution and a basis of the homogeneous
++ system.
++
++ The parametric linear system should be given in matrix form, with
++ a coefficient matrix and a right hand side vector. The entries
++ of the coefficient matrix and right hand side vector should be
++ polynomials in the parametric variables, over a Euclidean domain
++ of characteristic zero.
++
++ If the system is homogeneous, the right hand side need not be given.
++ The right hand side can also be replaced by an indeterminate vector,
++ in which case, the conditions required for consistency will also be
++ given.
++
++ The package has other facilities for saving results to external
++ files, as well as solving the system for a specified minimum rank.
++ Altogether there are 12 mode maps for psolve, as explained below.
ParametricLinearEquations(R,Var,Expon,GR) : SIG == CODE where
R : Join(EuclideanDomain, CharacteristicZero)
-- Warning: does not work if R is a field! because of Fraction R
Var : Join(OrderedSet,ConvertibleTo (Symbol))
Expon : OrderedAbelianMonoidSup
GR : PolynomialCategory(R,Expon,Var)
F ==> Fraction R
FILE ==> FileCategory
FNAME ==> FileName
GB ==> EuclideanGroebnerBasisPackage
I ==> Integer
L ==> List
M ==> Matrix
NNI ==> NonNegativeInteger
OUT ==> OutputForm
P ==> Polynomial
PI ==> PositiveInteger
SEG ==> Segment
SM ==> SquareMatrix
S ==> String
V ==> Vector
mf ==> MultivariateFactorize(Var,Expon,R,GR)
rp ==> GB(R,Expon,Var,GR)
gb ==> GB(R,Expon,Var,GR)
PR ==> P R
GF ==> Fraction PR
plift ==> PolynomialCategoryLifting(Expon,Var,R,GR,GF)
Inputmode ==> Integer
groebner ==> euclideanGroebner
redPol ==> euclideanNormalForm
-- MB: The following macros are data structures to store mostly
-- intermediate results
-- Rec stores a subdeterminant with corresponding row and column indices
-- Fgb is a Groebner basis for the ideal generated by the subdeterminants
-- of a given rank.
-- Linsys specifies a linearly independent system of a given system
-- assuming a given rank, using given row and column indices
-- Linsoln stores the solution to the parametric linear system as a basis
-- and a particular solution (for a given regime)
-- Rec2 stores the rank, and a list of subdeterminants of that rank,
-- and a Groebner basis for the ideal they generate.
-- Rec3 stores a regime and the corresponding solution; the regime is
-- given by a list of equations (eqzro) and one inequation (neqzro)
-- describing the quasi-algebraic set which is the regime; the
-- additional consistency conditions due to the rhs is given by wcond.
-- Ranksolns stores a list of regimes and their solutions, and the number
-- of regimes all together.
-- Rec8 (temporary) stores a quasi-algebraic set with an indication
-- whether it is empty (sysok = false) or not (sysok = true).
-- I think psolve should be renamed parametricSolve, or even
-- parametricLinearSolve. On the other hand, may be just solve will do.
-- Please feel free to change it to conform with system conventions.
-- Most psolve routines return a list of regimes and solutions,
-- except those that output to file when the number of regimes is
-- returned instead.
-- This version has been tested on the pc version 1.608 March 13, 1992
Rec ==> Record(det:GR,rows:L I,cols:L I)
Eqns ==> L Rec
Fgb ==> L GR -- groebner basis
Linsoln ==> Record(partsol:V GF,basis:L V GF)
Linsys ==> Record(mat:M GF,vec:L GF,rank:NNI,rows:L I,cols:L I)
Rec2 ==> Record(rank:NNI,eqns:Eqns,fgb:Fgb)
RankConds ==> L Rec2
Rec3 ==> Record(eqzro:L GR, neqzro:L GR,wcond:L PR, bsoln:Linsoln)
Ranksolns ==> Record(rgl:L Rec3,rgsz:I)
Rec8 ==> Record(sysok:Boolean, z0:L GR, n0:L GR)
SIG ==> with
psolve : (M GR, L GR) -> L Rec3
++ psolve(c,w) solves c z = w for all possible ranks
++ of the matrix c and given right hand side vector w
-- this is mode 1
psolve : (M GR, L Symbol) -> L Rec3
++ psolve(c,w) solves c z = w for all possible ranks
++ of the matrix c and indeterminate right hand side w
-- this is mode 2
psolve : M GR -> L Rec3
++ psolve(c) solves the homogeneous linear system
++ c z = 0 for all possible ranks of the matrix c
-- this is mode 3
psolve : (M GR, L GR, PI) -> L Rec3
++ psolve(c,w,k) solves c z = w for all possible ranks >= k
++ of the matrix c and given right hand side vector w
-- this is mode 4
psolve : (M GR, L Symbol, PI) -> L Rec3
++ psolve(c,w,k) solves c z = w for all possible ranks >= k
++ of the matrix c and indeterminate right hand side w
-- this is mode 5
psolve : (M GR, PI) -> L Rec3
++ psolve(c) solves the homogeneous linear system
++ c z = 0 for all possible ranks >= k of the matrix c
-- this is mode 6
psolve : (M GR, L GR, S) -> I
++ psolve(c,w,s) solves c z = w for all possible ranks
++ of the matrix c and given right hand side vector w,
++ writes the results to a file named s, and returns the
++ number of regimes
-- this is mode 7
psolve : (M GR, L Symbol, S) -> I
++ psolve(c,w,s) solves c z = w for all possible ranks
++ of the matrix c and indeterminate right hand side w,
++ writes the results to a file named s, and returns the
++ number of regimes
-- this is mode 8
psolve : (M GR, S) -> I
++ psolve(c,s) solves c z = 0 for all possible ranks
++ of the matrix c and given right hand side vector w,
++ writes the results to a file named s, and returns the
++ number of regimes
-- this is mode 9
psolve : (M GR, L GR, PI, S) -> I
++ psolve(c,w,k,s) solves c z = w for all possible ranks >= k
++ of the matrix c and given right hand side w,
++ writes the results to a file named s, and returns the
++ number of regimes
-- this is mode 10
psolve : (M GR, L Symbol, PI, S) -> I
++ psolve(c,w,k,s) solves c z = w for all possible ranks >= k
++ of the matrix c and indeterminate right hand side w,
++ writes the results to a file named s, and returns the
++ number of regimes
-- this is mode 11
psolve : (M GR, PI, S) -> I
++ psolve(c,k,s) solves c z = 0 for all possible ranks >= k
++ of the matrix c,
++ writes the results to a file named s, and returns the
++ number of regimes
-- this is mode 12
wrregime : (L Rec3, S) -> I
++ wrregime(l,s) writes a list of regimes to a file named s
++ and returns the number of regimes written
rdregime : S -> L Rec3
++ rdregime(s) reads in a list from a file with name s
-- for internal use only --
-- these are exported so my other packages can use them
bsolve : (M GR, L GF, NNI, S, Inputmode) -> Ranksolns
++ bsolve(c, w, r, s, m) returns a list of regimes and
++ solutions of the system c z = w for ranks at least r;
++ depending on the mode m chosen, it writes the output to
++ a file given by the string s.
dmp2rfi : GR -> GF
++ dmp2rfi(p) converts p to target domain
dmp2rfi : M GR -> M GF
++ dmp2rfi(m) converts m to target domain
dmp2rfi : L GR -> L GF
++ dmp2rfi(l) converts l to target domain
se2rfi : L Symbol -> L GF
++ se2rfi(l) converts l to target domain
pr2dmp : PR -> GR
++ pr2dmp(p) converts p to target domain
hasoln : (Fgb, L GR) -> Rec8
++ hasoln(g, l) tests whether the quasi-algebraic set
++ defined by p = 0 for p in g and q ^= 0 for q in l
++ is empty or not and returns a simplified definition
++ of the quasi-algebraic set
-- this is now done in QALGSET package
ParCondList : (M GR,NNI) -> RankConds
++ ParCondList(c,r) computes a list of subdeterminants of each
++ rank >= r of the matrix c and returns
++ a groebner basis for the
++ ideal they generate
redpps : (Linsoln, Fgb) -> Linsoln
++ redpps(s,g) returns the simplified form of s after reducing
++ modulo a groebner basis g
-- L O C A L F U N C T I O N S
B1solve : Linsys -> Linsoln
++ B1solve(s) solves the system (s.mat) z = s.vec
++ for the variables given by the column indices of s.cols
++ in terms of the other variables and the right hand side s.vec
++ by assuming that the rank is s.rank,
++ that the system is consistent, with the linearly
++ independent equations indexed by the given row indices s.rows;
++ the coefficients in s.mat involving parameters are treated as
++ polynomials. B1solve(s) returns a particular solution to the
++ system and a basis of the homogeneous system (s.mat) z = 0.
factorset : GR -> L GR
++ factorset(p) returns the set of irreducible factors of p.
maxrank : RankConds -> NNI
++ maxrank(r) returns the maximum rank in the list r of regimes
minrank : RankConds -> NNI
++ minrank(r) returns the minimum rank in the list r of regimes
minset : L L GR -> L L GR
++ minset(sl) returns the sublist of sl consisting of the minimal
++ lists (with respect to inclusion) in the list sl of lists
nextSublist : (I, I) -> L L I
++ nextSublist(n,k) returns a list of k-subsets of {1, ..., n}.
overset? : (L GR, L L GR) -> Boolean
++ overset?(s,sl) returns true if s properly a sublist of a member
++ of sl; otherwise it returns false
ParCond : (M GR,NNI) -> Eqns
++ ParCond(m,k) returns the list of all k by k subdeterminants in
++ the matrix m
redmat : (M GR, Fgb) -> M GR
++ redmat(m,g) returns a matrix whose entries are those of m
++ modulo the ideal generated by the groebner basis g
regime : (Rec,M GR,L GF,L L GR,NNI,NNI,Inputmode) -> Rec3
++ regime(y,c, w, p, r, rm, m) returns a regime,
++ a list of polynomials specifying the consistency conditions,
++ a particular solution and basis representing the general
++ solution of the parametric linear system c z = w
++ on that regime. The regime returned depends on
++ the subdeterminant y.det and the row and column indices.
++ The solutions are simplified using the assumption that
++ the system has rank r and maximum rank rm. The list p
++ represents a list of list of factors of polynomials in
++ a groebner basis of the ideal generated by higher order
++ subdeterminants, and ius used for the simplification.
++ The mode m
++ distinguishes the cases when the system is homogeneous,
++ or the right hand side is arbitrary, or when there is no
++ new right hand side variables.
sqfree : GR -> GR
++ sqfree(p) returns the product of square free factors of p
inconsistent? : L GR -> Boolean
++ inconsistent?(pl) returns true if the system of equations
++ p = 0 for p in pl is inconsistent. It is assumed
++ that pl is a groebner basis.
-- this is needed because of change to
-- EuclideanGroebnerBasisPackage
inconsistent? : L PR -> Boolean
++ inconsistent?(pl) returns true if the system of equations
++ p = 0 for p in pl is inconsistent. It is assumed
++ that pl is a groebner basis.
-- this is needed because of change to
-- EuclideanGroebnerBasisPackage
CODE ==> add
inconsistent?(pl:L GR):Boolean ==
for p in pl repeat
ground? p => return true
false
inconsistent?(pl:L PR):Boolean ==
for p in pl repeat
ground? p => return true
false
B1solve (sys:Linsys):Linsoln ==
i,j,i1,j1:I
rss:L I:=sys.rows
nss:L I:=sys.cols
k:=sys.rank
cmat:M GF:=sys.mat
n:=ncols cmat
frcols:L I:=setDifference$(L I) (expand$(SEG I) (1..n), nss)
w:L GF:=sys.vec
p:V GF:=new(n,0)
pbas:L V GF:=[]
if k ^= 0 then
augmat:M GF:=zero(k,n+1)
for i in rss for i1 in 1.. repeat
for j in nss for j1 in 1.. repeat
augmat(i1,j1):=cmat(i,j)
for j in frcols for j1 in k+1.. repeat
augmat(i1,j1):=-cmat(i,j)
augmat(i1,n+1):=w.i
augmat:=rowEchelon$(M GF) augmat
for i in nss for i1 in 1.. repeat p.i:=augmat(i1,n+1)
for j in frcols for j1 in k+1.. repeat
pb:V GF:=new(n,0)
pb.j:=1
for i in nss for i1 in 1.. repeat
pb.i:=augmat(i1,j1)
pbas:=cons(pb,pbas)
else
for j in frcols for j1 in k+1.. repeat
pb:V GF:=new(n,0)
pb.j:=1
pbas:=cons(pb,pbas)
[p,pbas]
regime (y, coef, w, psbf, rk, rkmax, mode) ==
i,j:I
-- use the y.det nonzero to simplify the groebner basis
-- of ideal generated by higher order subdeterminants
ydetf:L GR:=factorset y.det
yzero:L GR:=
rk = rkmax => nil$(L GR)
psbf:=[setDifference(x, ydetf) for x in psbf]
groebner$gb [*/x for x in psbf]
-- simplify coefficients by modulo ideal
nc:M GF:=dmp2rfi redmat(coef,yzero)
-- solve the system
rss:L I:=y.rows; nss:L I :=y.cols
sys:Linsys:=[nc,w,rk,rss,nss]$Linsys
pps:= B1solve(sys)
pp:=pps.partsol
frows:L I:=setDifference$(L I) (expand$(SEG I) (1..nrows coef),rss)
wcd:L PR:= []
-- case homogeneous rhs
entry? (mode, [3,6,9,12]$(L I)) =>
[yzero, ydetf,wcd, redpps(pps, yzero)]$Rec3
-- case arbitrary rhs, pps not reduced
for i in frows repeat
weqn:GF:=+/[nc(i,j)*(pp.j) for j in nss]
wnum:PR:=numer$GF (w.i - weqn)
wnum = 0 => "trivially satisfied"
ground? wnum => return [yzero, ydetf,[1$PR]$(L PR),pps]$Rec3
wcd:=cons(wnum,wcd)
entry? (mode, [2,5,8,11]$(L I)) => [yzero, ydetf, wcd, pps]$Rec3
-- case no new rhs variable
if not empty? wcd then _
yzero:=removeDuplicates append(yzero,[pr2dmp pw for pw in wcd])
test:Rec8:=hasoln (yzero, ydetf)
not test.sysok => [test.z0, test.n0, [1$PR]$(L PR), pps]$Rec3
[test.z0, test.n0, [], redpps(pps, test.z0)]$Rec3
bsolve (coeff, w, h, outname, mode) ==
r:=nrows coeff
r ^= #w => error "number of rows unequal on lhs and rhs"
newfile:FNAME
rksoln:File Rec3
count:I:=0
lrec3:L Rec3:=[]
filemode:Boolean:= entry? (mode, [7,8,9,10,11,12]$(L I))
if filemode then
newfile:=new$FNAME ("",outname,"regime")
rksoln:=open$(File Rec3) newfile
y:Rec
k:NNI
rrcl:RankConds:=
entry? (mode,[1,2,3,7,8,9]$(L I)) => ParCondList (coeff,0)
entry? (mode,[4,5,6,10,11,12]$(L I)) => ParCondList (coeff,h)
rkmax:=maxrank rrcl
rkmin:=minrank rrcl
for k in rkmax-rkmin+1..1 by -1 repeat
rk:=rrcl.k.rank
pc:Eqns:=rrcl.k.eqns
psb:Fgb:= (if rk=rkmax then [] else rrcl.(k+1).fgb)
psbf:L L GR:= [factorset x for x in psb]
psbf:= minset(psbf)
for y in pc repeat
rec3:Rec3:= regime (y, coeff, w, psbf, rk, rkmax, mode)
inconsistent? rec3.wcond => "incompatible system"
if filemode then write_!(rksoln, rec3)
else lrec3:= cons(rec3, lrec3)
count:=count+1
if filemode then close_! rksoln
[lrec3, count]$Ranksolns
factorset y ==
ground? y => []
[j.factor for j in factors(factor$mf y)]
ParCondList (mat, h) ==
rcl: RankConds:= []
ps: L GR:=[]
pc:Eqns:=[]
npc: Eqns:=[]
psbf: Fgb:=[]
rc: Rec
done: Boolean := false
r:=nrows mat
n:=ncols mat
maxrk:I:=min(r,n)
k:NNI
for k in min(r,n)..h by -1 until done repeat
pc:= ParCond(mat,k)
npc:=[]
(empty? pc) and (k >= 1) => maxrk:= k - 1
if ground? pc.1.det -- only one is sufficient (neqzro = {})
then (npc:=pc; done:=true; ps := [1$GR])
else
zro:L GR:= (if k = maxrk then [] else rcl.1.fgb)
covered:Boolean:=false
for rc in pc until covered repeat
p:GR:= redPol$rp (rc.det, zro)
p = 0 => "incompatible or covered subdeterminant"
test:=hasoln(zro, [rc.det])
^test.sysok => "incompatible or covered"
zro:=groebner$gb (cons(p,zro))
npc:=cons(rc,npc)
done:= covered:= inconsistent? zro
ps:=zro
pcl: Rec2:= construct(k,npc,ps)
rcl:=cons(pcl,rcl)
rcl
redpps(pps, zz) ==
pv:=pps.partsol
r:=#pv
pb:=pps.basis
n:=#pb + 1
nummat:M GR:=zero(r,n)
denmat:M GR:=zero(r,n)
for i in 1..r repeat
nummat(i,1):=pr2dmp numer$GF pv.i
denmat(i,1):=pr2dmp denom$GF pv.i
for j in 2..n repeat
for i in 1..r repeat
nummat(i,j):=pr2dmp numer$GF (pb.(j-1)).i
denmat(i,j):=pr2dmp denom$GF (pb.(j-1)).i
nummat:=redmat(nummat, zz)
denmat:=redmat(denmat, zz)
for i in 1..r repeat
pv.i:=(dmp2rfi nummat(i,1))/(dmp2rfi denmat(i,1))
for j in 2..n repeat
pbj:V GF:=new(r,0)
for i in 1..r repeat
pbj.i:=(dmp2rfi nummat(i,j))/(dmp2rfi denmat(i,j))
pb.(j-1):=pbj
[pv, pb]
dmp2rfi (mat:M GR): M GF ==
r:=nrows mat
n:=ncols mat
nmat:M GF:=zero(r,n)
for i in 1..r repeat
for j in 1..n repeat
nmat(i,j):=dmp2rfi mat(i,j)
nmat
dmp2rfi (vl: L GR):L GF ==
[dmp2rfi v for v in vl]
psolve (mat:M GR, w:L GR): L Rec3 ==
bsolve(mat, dmp2rfi w, 1, "nofile", 1).rgl
psolve (mat:M GR, w:L Symbol): L Rec3 ==
bsolve(mat, se2rfi w, 1, "nofile", 2).rgl
psolve (mat:M GR): L Rec3 ==
bsolve(mat, [0$GF for i in 1..nrows mat], 1, "nofile", 3).rgl
psolve (mat:M GR, w:L GR, h:PI): L Rec3 ==
bsolve(mat, dmp2rfi w, h::NNI, "nofile", 4).rgl
psolve (mat:M GR, w:L Symbol, h:PI): L Rec3 ==
bsolve(mat, se2rfi w, h::NNI, "nofile", 5).rgl
psolve (mat:M GR, h:PI): L Rec3 ==
bsolve(mat, [0$GF for i in 1..nrows mat], h::NNI, "nofile", 6).rgl
psolve (mat:M GR, w:L GR, outname:S): I ==
bsolve(mat, dmp2rfi w, 1, outname, 7).rgsz
psolve (mat:M GR, w:L Symbol, outname:S): I ==
bsolve(mat, se2rfi w, 1, outname, 8).rgsz
psolve (mat:M GR, outname:S): I ==
bsolve(mat, [0$GF for i in 1..nrows mat], 1, outname, 9).rgsz
nextSublist (n,k) ==
n <= 0 => []
k <= 0 => [ nil$(List Integer) ]
k > n => []
n = 1 and k = 1 => [[1]]
mslist: L L I:=[]
for ms in nextSublist(n-1,k-1) repeat
mslist:=cons(append(ms,[n]),mslist)
append(nextSublist(n-1,k), mslist)
psolve (mat:M GR, w:L GR, h:PI, outname:S): I ==
bsolve(mat, dmp2rfi w, h::NNI, outname, 10).rgsz
psolve (mat:M GR, w:L Symbol, h:PI, outname:S): I ==
bsolve(mat, se2rfi w, h::NNI, outname, 11).rgsz
psolve (mat:M GR, h:PI, outname:S): I ==
bsolve(mat,[0$GF for i in 1..nrows mat],h::NNI,outname, 12).rgsz
hasoln (zro,nzro) ==
empty? zro => [true, zro, nzro]
zro:=groebner$gb zro
inconsistent? zro => [false, zro, nzro]
empty? nzro =>[true, zro, nzro]
pnzro:GR:=redPol$rp (*/nzro, zro)
pnzro = 0 => [false, zro, nzro]
nzro:=factorset pnzro
psbf:L L GR:= minset [factorset p for p in zro]
psbf:= [setDifference(x, nzro) for x in psbf]
entry? ([], psbf) => [false, zro, nzro]
zro:=groebner$gb [*/x for x in psbf]
inconsistent? zro => [false, zro, nzro]
nzro:=[redPol$rp (p,zro) for p in nzro]
nzro:=[p for p in nzro | ^(ground? p)]
[true, zro, nzro]
se2rfi w == [coerce$GF monomial$PR (1$PR, wi, 1) for wi in w]
pr2dmp p ==
ground? p => (ground p)::GR
algCoerceInteractive(p,PR,GR)$(Lisp) pretend GR
wrregime (lrec3, outname) ==
newfile:FNAME:=new$FNAME ("",outname,"regime")
rksoln: File Rec3:=open$(File Rec3) newfile
count:I:=0 -- number of distinct regimes
for rec3 in lrec3 repeat
write_!(rksoln, rec3)
count:=count+1
close_!(rksoln)
count
dmp2rfi (p:GR):GF ==
map$plift ((v1:Var):GF +-> (convert v1)@Symbol::GF,
(r1:R):GF +-> r1::PR::GF, p)
rdregime inname ==
infilename:=filename$FNAME ("",inname, "regime")
infile: File Rec3:=open$(File Rec3) (infilename, "input")
rksoln:L Rec3:=[]
rec3:Union(Rec3, "failed"):=readIfCan_!$(File Rec3) (infile)
while rec3 case Rec3 repeat
rksoln:=cons(rec3::Rec3,rksoln) -- replace : to :: for AIX
rec3:=readIfCan_!$(File Rec3) (infile)
close_!(infile)
rksoln
maxrank rcl ==
empty? rcl => 0
"max"/[j.rank for j in rcl]
minrank rcl ==
empty? rcl => 0
"min"/[j.rank for j in rcl]
minset lset ==
empty? lset => lset
[x for x in lset | ^(overset?(x,lset))]
sqfree p == */[j.factor for j in factors(squareFree p)]
ParCond (mat, k) ==
k = 0 => [[1, [], []]$Rec]
j:NNI:=k::NNI
DetEqn :Eqns := []
r:I:= nrows(mat)
n:I:= ncols(mat)
k > min(r,n) => error "k exceeds maximum possible rank "
found:Boolean:=false
for rss in nextSublist(r, k) until found repeat
for nss in nextSublist(n, k) until found repeat
matsub := mat(rss, nss) pretend SM(j, GR)
detmat := determinant(matsub)
if detmat ^= 0 then
found:= (ground? detmat)
detmat:=sqfree detmat
neweqn:Rec:=construct(detmat,rss,nss)
DetEqn:=cons(neweqn, DetEqn)
found => [first DetEqn]$Eqns
sort((z1:Rec,z2:Rec):Boolean +-> degree z1.det < degree z2.det, DetEqn)
overset?(p,qlist) ==
empty? qlist => false
or/[(brace$(Set GR) q) <$(Set GR) (brace$(Set GR) p) _
for q in qlist]
redmat (mat,psb) ==
i,j:I
r:=nrows(mat)
n:=ncols(mat)
newmat: M GR:=zero(r,n)
for i in 1..r repeat
for j in 1..n repeat
p:GR:=mat(i,j)
ground? p => newmat(i,j):=p
newmat(i,j):=redPol$rp (p,psb)
newmat
|