This file is indexed.

/usr/share/axiom-20170501/src/algebra/PNTHEORY.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
)abbrev package PNTHEORY PolynomialNumberTheoryFunctions
++ Author: Michael Monagan, Clifton J. Williamson
++ Date Created: June 1987
++ Date Last Updated: 10 November 1996 (Claude Quitte)
++ References: Knuth, The Art of Computer Programming Vol.2
++ Description:
++ This package provides various polynomial number theoretic functions
++ over the integers.

PolynomialNumberTheoryFunctions() : SIG == CODE where

  I ==> Integer
  RN ==> Fraction I
  SUP ==> SparseUnivariatePolynomial
  NNI ==> NonNegativeInteger

  SIG ==> with

    bernoulli : I -> SUP RN
      ++ bernoulli(n) returns the nth Bernoulli polynomial \spad{B[n](x)}.
      ++ Bernoulli polynomials denoted \spad{B(n,x)} computed by solving the
      ++ differential equation  \spad{differentiate(B(n,x),x) = n B(n-1,x)} where
      ++ \spad{B(0,x) = 1} and initial condition comes from \spad{B(n) = B(n,0)}.

    chebyshevT : I -> SUP I
      ++ chebyshevT(n) returns the nth Chebyshev polynomial \spad{T[n](x)}.
      ++ Note that Chebyshev polynomials of the first kind, 
      ++ denoted \spad{T[n](x)},
      ++ computed from the two term recurrence.  The generating function
      ++ \spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x)*t**n, n=0..infinity)}.

    chebyshevU : I -> SUP I
      ++ chebyshevU(n) returns the nth Chebyshev polynomial \spad{U[n](x)}.
      ++ Note that Chebyshev polynomials of the second kind, 
      ++ denoted \spad{U[n](x)},
      ++ computed from the two term recurrence.  The generating function
      ++ \spad{1/(1-2*t*x+t**2) = sum(T[n](x)*t**n, n=0..infinity)}.

    cyclotomic : I -> SUP I
      ++ cyclotomic(n) returns the nth cyclotomic polynomial \spad{phi[n](x)}.
      ++ Note that \spad{phi[n](x)} is the factor of \spad{x**n - 1} whose roots
      ++ are the primitive nth roots of unity.

    euler : I -> SUP RN
      ++ euler(n) returns the nth Euler polynomial \spad{E[n](x)}.
      ++ Note that Euler polynomials denoted \spad{E(n,x)} computed by solving 
      ++ the differential equation  
      ++ \spad{differentiate(E(n,x),x) = n E(n-1,x)} where
      ++ \spad{E(0,x) = 1} and initial condition comes 
      ++ from \spad{E(n) = 2**n E(n,1/2)}.

    fixedDivisor : SUP I -> I
      ++ fixedDivisor(a) for \spad{a(x)} in \spad{Z[x]} is the largest integer
      ++ f such that f divides \spad{a(x=k)} for all integers k.
      ++ Note that fixed divisor of \spad{a} is
      ++ \spad{reduce(gcd,[a(x=k) for k in 0..degree(a)])}.

    hermite : I -> SUP I
      ++ hermite(n) returns the nth Hermite polynomial \spad{H[n](x)}.
      ++ Note that Hermite polynomials, denoted \spad{H[n](x)}, are computed from
      ++ the two term recurrence.  The generating function is:
      ++ \spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n=0..infinity)}.

    laguerre : I -> SUP I
      ++ laguerre(n) returns the nth Laguerre polynomial \spad{L[n](x)}.
      ++ Note that Laguerre polynomials, denoted \spad{L[n](x)}, are computed 
      ++ from the two term recurrence.  The generating function is:
      ++ \spad{exp(x*t/(t-1))/(1-t) = sum(L[n](x)*t**n/n!, n=0..infinity)}.

    legendre : I -> SUP RN
      ++ legendre(n) returns the nth Legendre polynomial \spad{P[n](x)}.
      ++ Note that Legendre polynomials, denoted \spad{P[n](x)}, are computed 
      ++ from the two term recurrence.  The generating function is:
      ++ \spad{1/sqrt(1-2*t*x+t**2) = sum(P[n](x)*t**n, n=0..infinity)}.

  CODE ==> add

     import IntegerPrimesPackage(I)

     x := monomial(1,1)$SUP(I)
     y := monomial(1,1)$SUP(RN)

     -- For functions computed via a fixed term recurrence we record
     -- previous values so that the next value can be computed directly

     E : Record(En:I, Ev:SUP(RN)) := [0,1]
     B : Record( Bn:I, Bv:SUP(RN) ) := [0,1]
     H : Record( Hn:I, H1:SUP(I), H2:SUP(I) ) := [0,1,x]
     L : Record( Ln:I, L1:SUP(I), L2:SUP(I) ) := [0,1,x]
     P : Record( Pn:I, P1:SUP(RN), P2:SUP(RN) ) := [0,1,y]
     CT : Record( Tn:I, T1:SUP(I), T2:SUP(I) ) := [0,1,x]
     U : Record( Un:I, U1:SUP(I), U2:SUP(I) ) := [0,1,0]

     MonicQuotient: (SUP(I),SUP(I)) -> SUP(I)
     MonicQuotient (a,b) ==
       leadingCoefficient(b) ^= 1 => error "divisor must be monic"
       b = 1 => a
       da := degree a
       db := degree b            -- assertion: degree b > 0
       q:SUP(I) := 0
       while da >= db repeat
         t := monomial(leadingCoefficient a, (da-db)::NNI)
         a := a - b * t
         q := q + t
         da := degree a
       q

     cyclotomic n ==
       --++ cyclotomic polynomial denoted phi[n](x)
       p:I; q:I; r:I; s:I; m:NNI; c:SUP(I); t:SUP(I)
       n < 0 => error "cyclotomic not defined for negative integers"
       n = 0 => x
       k := n; s := p := 1
       c := x - 1
       while k > 1 repeat
         p := nextPrime p
         (q,r) := divide(k, p)
         if r = 0 then
           while r = 0 repeat (k := q; (q,r) := divide(k,p))
           t := multiplyExponents(c,p::NNI)
           c := MonicQuotient(t,c)
           s := s * p
       m := (n quo s) :: NNI
       multiplyExponents(c,m)

     euler n ==
       p : SUP(RN); t : SUP(RN); c : RN; s : I
       n < 0 => error "euler not defined for negative integers"
       if n < E.En then (s,p) := (0$I,1$SUP(RN)) else (s,p) := E
       -- (s,p) := if n < E.En then (0,1) else E
       for i in s+1 .. n repeat
         t := (i::RN) * integrate p
         c := euler(i)$IntegerNumberTheoryFunctions / 2**(i::NNI) - t(1/2)
         p := t + c::SUP(RN)
       E.En := n
       E.Ev := p
       p

     bernoulli n ==
       p : SUP RN; t : SUP RN; c : RN; s : I
       n < 0 => error "bernoulli not defined for negative integers"
       if n < B.Bn then (s,p) := (0$I,1$SUP(RN)) else (s,p) := B
       -- (s,p) := if n < B.Bn then (0,1) else B
       for i in s+1 .. n repeat
         t := (i::RN) * integrate p
         c := bernoulli(i)$IntegerNumberTheoryFunctions
         p := t + c::SUP(RN)
       B.Bn := n
       B.Bv := p
       p

     fixedDivisor a ==
       g:I; d:NNI; SUP(I)
       d := degree a
       g := coefficient(a, minimumDegree a)
       for k in 1..d while g > 1 repeat g := gcd(g,a k)
       g

     hermite n ==
       s : I; p : SUP(I); q : SUP(I)
       n < 0 => error "hermite not defined for negative integers"
       -- (s,p,q) := if n < H.Hn then (0,1,x) else H
       if n < H.Hn then (s := 0; p := 1; q := x) else (s,p,q) := H
       for k in s+1 .. n repeat (p,q) := (2*x*p-2*(k-1)*q,p)
       H.Hn := n
       H.H1 := p
       H.H2 := q
       p

     legendre n ==
       s:I; t:I; p:SUP(RN); q:SUP(RN)
       n < 0 => error "legendre not defined for negative integers"
       -- (s,p,q) := if n < P.Pn then (0,1,y) else P
       if n < P.Pn then (s := 0; p := 1; q := y) else (s,p,q) := P
       for k in s+1 .. n repeat
         t := k-1
         (p,q) := ((k+t)$I/k*y*p - t/k*q,p)
       P.Pn := n
       P.P1 := p
       P.P2 := q
       p

     laguerre n ==
       k:I; s:I; t:I; p:SUP(I); q:SUP(I)
       n < 0 => error "laguerre not defined for negative integers"
       -- (s,p,q) := if n < L.Ln then (0,1,x) else L
       if n < L.Ln then (s := 0; p := 1; q := x) else (s,p,q) := L
       for k in s+1 .. n repeat
         t := k-1
         (p,q) := ((((k+t)$I)::SUP(I)-x)*p-t**2*q,p)
       L.Ln := n
       L.L1 := p
       L.L2 := q
       p

     chebyshevT n ==
       s : I; p : SUP(I); q : SUP(I)
       n < 0 => error "chebyshevT not defined for negative integers"
       -- (s,p,q) := if n < CT.Tn then (0,1,x) else CT
       if n < CT.Tn then (s := 0; p := 1; q := x) else (s,p,q) := CT
       for k in s+1 .. n repeat (p,q) := ((2*x*p - q),p)
       CT.Tn := n
       CT.T1 := p
       CT.T2 := q
       p

     chebyshevU n ==
       s : I; p : SUP(I); q : SUP(I)
       n < 0 => error "chebyshevU not defined for negative integers"
       if n < U.Un then (s := 0; p := 1; q := 0) else (s,p,q) := U
       for k in s+1 .. n repeat (p,q) := ((2*x*p - q),p)
       U.Un := n
       U.U1 := p
       U.U2 := q
       p