This file is indexed.

/usr/share/axiom-20170501/src/algebra/PROJSP.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
)abbrev domain PROJSP ProjectiveSpace
++ Author: Gaetan Hache
++ Date Created: 17 nov 1992
++ Date Last Updated: May 2010 by Tim Daly
++ Description:
++ This is part of the PAFF package, related to projective space.

ProjectiveSpace(dim,K) : SIG == CODE where
  dim : NonNegativeInteger
  K : Field

  NNI  ==> NonNegativeInteger
  LIST ==> List

  SIG ==> ProjectiveSpaceCategory(K)

  CODE ==> List(K) add

    Rep:= List(K)

    coerce(pt:%):OutputForm == 
      dd:OutputForm:= ":" :: OutputForm
      llout:List(OutputForm):=[ hconcat(dd, a::OutputForm) for a in rest pt]
      lout:= cons( (first pt)::OutputForm , llout)
      out:= hconcat lout
      oo:=paren(out)
      ee:OutputForm:= degree(pt) :: OutputForm
      oo**ee

    definingField(pt)==
      K has PseudoAlgebraicClosureOfPerfectFieldCategory => _
        maxTower(pt pretend Rep)
      1$K
    
    degree(pt)==
      K has PseudoAlgebraicClosureOfPerfectFieldCategory => _
        extDegree definingField pt
      1
      
    coerce(pt:%):List(K) == pt pretend Rep   
      
    projectivePoint(pt:LIST(K))==
        pt :: %

    list(ptt)==
      ptt pretend Rep

    pointValue(ptt)==
      ptt pretend Rep

    conjugate(p,e)==
      lp:Rep:=p
      pc:List(K):=[c**e for c in lp]
      projectivePoint(pc)

    homogenize(ptt,nV)==
      if K has Field then
        pt:=list(ptt)$%
        zero?(pt.nV) => error "Impossible to homogenize this point"
        divPt:=pt.nV
        ([(a/divPt) for a in pt])
      else
        ptt

    rational?(p,n)== p=conjugate(p,n)

    rational?(p)==rational?(p,characteristic()$K)

    removeConjugate(l)==removeConjugate(l,characteristic()$K)

    removeConjugate(l:LIST(%),n:NNI):LIST(%)==
      if K has FiniteFieldCategory then
        allconj:LIST(%):=empty()
        conjrem:LIST(%):=empty()
        for p in l repeat
          if ^member?(p,allconj) then
            conjrem:=cons(p,conjrem)
            allconj:=concat(allconj,orbit(p,n))
        conjrem
      else
        error "The field is not finite"

    conjugate(p)==conjugate(p,characteristic()$K)

    orbit(p)==orbit(p,characteristic()$K)

    orbit(p,e)==
      if K has FiniteFieldCategory then
        l:LIST(%):=[p]
        np:%:=conjugate(p,e)
        flag:=^(np=p)::Boolean
        while flag repeat
          l:=concat(np,l)
          np:=conjugate(np,e)
          flag:=not (np=p)::Boolean
        l
      else
        error "Cannot compute the conjugate"

    aa:% = bb:% ==
      ah:=homogenize(aa)
      bh:=homogenize(bb)
      ah =$Rep bh

    coerce(pt:LIST(K))==
        ^(dim=#pt) => error "Le point n'a pas la bonne dimension"
        reduce("and",[zero?(a) for a in pt]) => _
          error "Ce n'est pas un point projectif"
        ptt:%:= pt
        homogenize ptt

    homogenize(ptt)==
      homogenize(ptt,lastNonNull(ptt))

    nonZero?: K -> Boolean
    nonZero?(a)==
      not(zero?(a))

    lastNonNull(ptt)==
      pt:=ptt pretend Rep
      (dim pretend Integer)+1-_
        (position("nonZero?",(reverse(pt)$LIST(K)))$LIST(K))
      
    lastNonNul(pt)==lastNonNull(pt)