This file is indexed.

/usr/share/axiom-20170501/src/algebra/PRS.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
)abbrev package PRS PseudoRemainderSequence
++ Author: Ducos Lionel (Lionel.Ducos@mathlabo.univ-poitiers.fr)
++ Date Created: january 1995
++ Date Last Updated: 5 february 1999
++ References : 
++ Lionel Ducos ``Optimizations of the subresultant algorithm''
++ Journal of Pure and Applied Algebra V145 No 2 Jan 2000 pp149-163
++ Description: 
++ This package contains some functions: discriminant, resultant,
++ subResultantGcd, chainSubResultants, degreeSubResultant, lastSubResultant,
++ resultantEuclidean, subResultantGcdEuclidean, semiSubResultantGcdEuclidean1,
++ semiSubResultantGcdEuclidean2\br
++ These procedures come from improvements of the subresultants algorithm.

PseudoRemainderSequence(R, polR) : SIG == CODE where
  R : IntegralDomain
  polR : UnivariatePolynomialCategory(R)

  NNI ==> NonNegativeInteger
  LC  ==> leadingCoefficient

  SIG ==> with

    resultant : (polR, polR) -> R
      ++ \axiom{resultant(P, Q)} returns the resultant 
      ++ of \axiom{P} and \axiom{Q}

    resultantEuclidean : (polR, polR) -> 
                          Record(coef1 : polR, coef2 : polR, resultant : R)
      ++ \axiom{resultantEuclidean(P,Q)} carries out the equality
      ++ \axiom{coef1*P + coef2*Q = resultant(P,Q)}

    semiResultantEuclidean2 : (polR, polR) -> 
                          Record(coef2 : polR, resultant : R)
      ++ \axiom{semiResultantEuclidean2(P,Q)} carries out the equality
      ++ \axiom{...P + coef2*Q = resultant(P,Q)}.
      ++ Warning. \axiom{degree(P) >= degree(Q)}.

    semiResultantEuclidean1 : (polR, polR) -> 
                          Record(coef1 : polR, resultant : R)
      ++ \axiom{semiResultantEuclidean1(P,Q)} carries out the equality
      ++ \axiom{coef1.P + ? Q = resultant(P,Q)}.

    indiceSubResultant : (polR, polR, NNI) -> polR
      ++ \axiom{indiceSubResultant(P, Q, i)} returns
      ++ the subresultant of indice \axiom{i}

    indiceSubResultantEuclidean : (polR, polR, NNI) -> 
                       Record(coef1 : polR, coef2 : polR, subResultant : polR)
      ++ \axiom{indiceSubResultant(P, Q, i)} returns
      ++ the subresultant \axiom{S_i(P,Q)} and carries out the equality
      ++ \axiom{coef1*P + coef2*Q = S_i(P,Q)}

    semiIndiceSubResultantEuclidean : (polR, polR, NNI) -> 
                          Record(coef2 : polR, subResultant : polR)
      ++ \axiom{semiIndiceSubResultantEuclidean(P, Q, i)} returns
      ++ the subresultant \axiom{S_i(P,Q)} and carries out the equality
      ++ \axiom{...P + coef2*Q = S_i(P,Q)}
      ++ Warning. \axiom{degree(P) >= degree(Q)}.

    degreeSubResultant : (polR, polR, NNI) -> polR
      ++ \axiom{degreeSubResultant(P, Q, d)} computes 
      ++ a subresultant of degree \axiom{d}.

    degreeSubResultantEuclidean : (polR, polR, NNI) -> 
                       Record(coef1 : polR, coef2 : polR, subResultant : polR)
      ++ \axiom{indiceSubResultant(P, Q, i)} returns
      ++ a subresultant \axiom{S} of degree \axiom{d} 
      ++ and carries out the equality \axiom{coef1*P + coef2*Q = S_i}.

    semiDegreeSubResultantEuclidean : (polR, polR, NNI) -> 
                          Record(coef2 : polR, subResultant : polR)
      ++ \axiom{indiceSubResultant(P, Q, i)} returns
      ++ a subresultant \axiom{S} of degree \axiom{d} 
      ++ and carries out the equality \axiom{...P + coef2*Q = S_i}.
      ++ Warning. \axiom{degree(P) >= degree(Q)}.

    lastSubResultant : (polR, polR) -> polR
      ++ \axiom{lastSubResultant(P, Q)} computes 
      ++ the last non zero subresultant of \axiom{P} and \axiom{Q}

    lastSubResultantEuclidean : (polR, polR) -> 
                       Record(coef1 : polR, coef2 : polR, subResultant : polR)
      ++ \axiom{lastSubResultantEuclidean(P, Q)} computes
      ++ the last non zero subresultant \axiom{S} 
      ++ and carries out the equality \axiom{coef1*P + coef2*Q = S}.

    semiLastSubResultantEuclidean : (polR, polR) -> 
                       Record(coef2 : polR, subResultant : polR)
      ++ \axiom{semiLastSubResultantEuclidean(P, Q)} computes
      ++ the last non zero subresultant \axiom{S} 
      ++ and carries out the equality \axiom{...P + coef2*Q = S}.
      ++ Warning. \axiom{degree(P) >= degree(Q)}.

    subResultantGcd : (polR, polR) -> polR
      ++ \axiom{subResultantGcd(P, Q)} returns the gcd 
      ++ of two primitive polynomials \axiom{P} and \axiom{Q}.

    subResultantGcdEuclidean : (polR, polR) 
                     -> Record(coef1 : polR, coef2 : polR, gcd : polR)
      ++ \axiom{subResultantGcdEuclidean(P,Q)} carries out the equality
      ++ \axiom{coef1*P + coef2*Q = +/- S_i(P,Q)}
      ++ where the degree (not the indice) 
      ++ of the subresultant \axiom{S_i(P,Q)} is the smaller as possible.

    semiSubResultantGcdEuclidean2 : (polR, polR) 
                                   -> Record(coef2 : polR, gcd : polR)
      ++ \axiom{semiSubResultantGcdEuclidean2(P,Q)} carries out the equality
      ++ \axiom{...P + coef2*Q = +/- S_i(P,Q)}
      ++ where the degree (not the indice) 
      ++ of the subresultant \axiom{S_i(P,Q)} is the smaller as possible.
      ++ Warning. \axiom{degree(P) >= degree(Q)}.

    semiSubResultantGcdEuclidean1: (polR, polR)->Record(coef1: polR, gcd: polR)
      ++ \axiom{semiSubResultantGcdEuclidean1(P,Q)} carries out the equality
      ++ \axiom{coef1*P + ? Q = +/- S_i(P,Q)}
      ++ where the degree (not the indice) 
      ++ of the subresultant \axiom{S_i(P,Q)} is the smaller as possible.

    discriminant : polR -> R
      ++ \axiom{discriminant(P, Q)} returns the discriminant 
      ++ of \axiom{P} and \axiom{Q}.

    discriminantEuclidean : polR -> 
                         Record(coef1 : polR, coef2 : polR, discriminant : R)
      ++ \axiom{discriminantEuclidean(P)} carries out the equality
      ++ \axiom{coef1 * P + coef2 * D(P) = discriminant(P)}.

    semiDiscriminantEuclidean : polR -> 
                           Record(coef2 : polR, discriminant : R)
      ++ \axiom{discriminantEuclidean(P)} carries out the equality
      ++ \axiom{...P + coef2 * D(P) = discriminant(P)}.
      ++ Warning. \axiom{degree(P) >= degree(Q)}.

    chainSubResultants : (polR, polR) -> List(polR)
      ++ \axiom{chainSubResultants(P, Q)} computes the list
      ++ of non zero subresultants of \axiom{P} and \axiom{Q}.

    schema : (polR, polR) -> List(NNI)
      ++ \axiom{schema(P,Q)} returns the list of degrees of
      ++ non zero subresultants of \axiom{P} and \axiom{Q}.

    if R has GcdDomain then

      resultantReduit : (polR, polR) -> R 
        ++ \axiom{resultantReduit(P,Q)} returns the "reduce resultant"
        ++ of \axiom{P} and \axiom{Q}.

      resultantReduitEuclidean : (polR, polR) -> 
                        Record(coef1 : polR, coef2 : polR, resultantReduit : R)
        ++ \axiom{resultantReduitEuclidean(P,Q)} returns 
        ++ the "reduce resultant" and carries out the equality
        ++ \axiom{coef1*P + coef2*Q = resultantReduit(P,Q)}.

      semiResultantReduitEuclidean : (polR, polR) -> 
                        Record(coef2 : polR, resultantReduit : R)
        ++ \axiom{semiResultantReduitEuclidean(P,Q)} returns 
        ++ the "reduce resultant" and carries out the equality
        ++ \axiom{...P + coef2*Q = resultantReduit(P,Q)}.

      gcd : (polR, polR) -> polR 
        ++ \axiom{gcd(P, Q)} returns the gcd of \axiom{P} and \axiom{Q}.
       
       -- sub-routines exported for convenience ----------------------------

    "*" : (R, Vector(polR)) -> Vector(polR)
      ++ \axiom{r * v} computes the product of \axiom{r} and \axiom{v}

    "exquo" : (Vector(polR), R) -> Vector(polR)
      ++ \axiom{v exquo r} computes 
      ++ the exact quotient of \axiom{v} by \axiom{r}
         
    pseudoDivide : (polR, polR) -> 
                                Record(coef:R, quotient:polR, remainder:polR)
      ++ \axiom{pseudoDivide(P,Q)} computes the pseudoDivide 
      ++ of \axiom{P} by \axiom{Q}.

    divide : (polR, polR) -> Record(quotient : polR, remainder : polR)
      ++ \axiom{divide(F,G)} computes quotient and rest 
      ++ of the exact euclidean division of \axiom{F} by \axiom{G}.

    Lazard : (R, R, NNI) -> R
      ++ \axiom{Lazard(x, y, n)} computes \axiom{x**n/y**(n-1)}
       
    Lazard2 : (polR, R, R, NNI) -> polR
      ++ \axiom{Lazard2(F, x, y, n)} computes  \axiom{(x/y)**(n-1) * F}
         
    next_sousResultant2 : (polR, polR, polR, R) -> polR
      ++ \axiom{nextsousResultant2(P, Q, Z, s)} returns
      ++ the subresultant \axiom{S_{e-1}} where
      ++ \axiom{P ~ S_d,  Q = S_{d-1},  Z = S_e,  s = lc(S_d)}

    resultant_naif : (polR, polR) -> R
      ++ \axiom{resultantEuclidean_naif(P,Q)} returns 
      ++ the resultant of \axiom{P} and \axiom{Q} computed 
      ++ by means of the naive algorithm.

    resultantEuclidean_naif : (polR, polR) -> 
                          Record(coef1 : polR, coef2 : polR, resultant : R)
      ++ \axiom{resultantEuclidean_naif(P,Q)} returns 
      ++ the extended resultant of \axiom{P} and \axiom{Q} computed 
      ++ by means of the naive algorithm.

    semiResultantEuclidean_naif : (polR, polR) -> 
                          Record(coef2 : polR, resultant : R)
      ++ \axiom{resultantEuclidean_naif(P,Q)} returns 
      ++ the semi-extended resultant of \axiom{P} and \axiom{Q} computed 
      ++ by means of the naive algorithm.

  CODE ==> add

    X : polR := monomial(1$R,1)

    r : R * v : Vector(polR) == r::polR * v
              -- the instruction  map(r * #1, v) is slower !?

    v : Vector(polR) exquo r : R == 
      map((p1:polR):polR +-> (p1 exquo r)::polR, v)

    pseudoDivide(P : polR, Q : polR) : 
                                 Record(coef:R,quotient:polR,remainder:polR) ==
       -- computes the pseudoDivide of P by Q
       zero?(Q) => error("PseudoDivide$PRS : division by 0")
       zero?(P) => construct(1, 0, P)
       lcQ : R := LC(Q)
       (degP, degQ) := (degree(P), degree(Q))
       degP < degQ => construct(1, 0, P)
       Q := reductum(Q)
       i : NNI := (degP - degQ + 1)::NNI
       co : R := lcQ**i
       quot : polR := 0$polR
       while (delta : Integer := degree(P) - degQ) >= 0 repeat
         i := (i - 1)::NNI
         mon := monomial(LC(P), delta::NNI)$polR
         quot := quot + lcQ**i * mon
         P := lcQ * reductum(P) - mon * Q
       P := lcQ**i * P
       return construct(co, quot, P)

    divide(F : polR, G : polR) : Record(quotient : polR, remainder : polR)==
    -- computes quotient and rest of the exact euclidean division of F by G
         lcG : R := LC(G)
         degG : NNI := degree(G)
         zero?(degG) => ( F := (F exquo lcG)::polR; return construct(F, 0))
         G : polR := reductum(G)
         quot : polR := 0
         while (delta := degree(F) - degG) >= 0 repeat
            mon : polR := monomial((LC(F) exquo lcG)::R, delta::NNI)
            quot := quot + mon
            F := reductum(F) - mon * G
         return construct(quot, F)

    resultant_naif(P : polR, Q : polR) : R ==
       -- valid over a field
       a : R := 1
       repeat
          zero?(Q) => return 0
          (degP, degQ) := (degree(P), degree(Q))
          if odd?(degP) and odd?(degQ) then a := - a
          zero?(degQ) => return (a * LC(Q)**degP)
          U : polR := divide(P, Q).remainder
          a := a * LC(Q)**(degP - degree(U))::NNI
          (P, Q) := (Q, U)

    resultantEuclidean_naif(P : polR, Q : polR) :
                       Record(coef1 : polR, coef2 : polR, resultant : R) ==
       -- valid over a field.
       a : R := 1
       old_cf1 : polR := 1 ; cf1 : polR := 0
       old_cf2 : polR := 0 ; cf2 : polR := 1
       repeat
          zero?(Q) => construct(0::polR, 0::polR, 0::R)
          (degP, degQ) := (degree(P), degree(Q))
          if odd?(degP) and odd?(degQ) then a := -a
          if zero?(degQ) then
             a := a * LC(Q)**(degP-1)::NNI
             return construct(a*cf1, a*cf2, a*LC(Q))
          divid := divide(P,Q)
          a := a * LC(Q)**(degP - degree(divid.remainder))::NNI
          (P, Q) := (Q, divid.remainder)
          (old_cf1, old_cf2, cf1, cf2) := (cf1, cf2, 
                old_cf1 - divid.quotient * cf1, old_cf2 - divid.quotient * cf2)

    semiResultantEuclidean_naif(P : polR, Q : polR) :
                       Record(coef2 : polR, resultant : R) ==
       -- valid over a field
       a : R := 1
       old_cf2 : polR := 0 ; cf2 : polR := 1
       repeat
          zero?(Q) => construct(0::polR, 0::R)
          (degP, degQ) := (degree(P), degree(Q))
          if odd?(degP) and odd?(degQ) then a := -a
          if zero?(degQ) then
             a := a * LC(Q)**(degP-1)::NNI
             return construct(a*cf2, a*LC(Q))
          divid := divide(P,Q)
          a := a * LC(Q)**(degP - degree(divid.remainder))::NNI
          (P, Q) := (Q, divid.remainder)
          (old_cf2, cf2) := (cf2, old_cf2 - divid.quotient * cf2)

    Lazard(x : R, y : R, n : NNI) : R ==
       zero?(n) => error("Lazard$PRS : n = 0")
       (n = 1) => x
       a : NNI := 1
       while n >= (b := 2*a) repeat a := b
       c : R := x
       n := (n - a)::NNI
       repeat                    --  c = x**i / y**(i-1),  i=n_0 quo a,  a=2**?
          (a = 1) => return c
          a := a quo 2
          c := ((c * c) exquo y)::R
          if n >= a then ( c := ((c * x) exquo y)::R ; n := (n - a)::NNI )

    Lazard2(F : polR, x : R, y : R, n : NNI) : polR ==
       zero?(n) => error("Lazard2$PRS : n = 0")
       (n = 1) => F
       x := Lazard(x, y, (n-1)::NNI)
       return ((x * F) exquo y)::polR

    Lazard3(V : Vector(polR), x : R, y : R, n : NNI) : Vector(polR) ==
       -- computes x**(n-1) * V / y**(n-1)
       zero?(n) => error("Lazard2$prs : n = 0")
       (n = 1) => V
       x := Lazard(x, y, (n-1)::NNI)
       return ((x * V) exquo y)

    next_sousResultant2(P : polR, Q : polR, Z : polR, s : R) : polR ==
       (lcP, c, se) := (LC(P), LC(Q), LC(Z))
       (d, e) := (degree(P), degree(Q))
       (P, Q, H) := (reductum(P), reductum(Q), - reductum(Z))
       A : polR := coefficient(P, e) * H
       for i in e+1..d-1 repeat 
          H := if degree(H) = e-1 then  
                  X * reductum(H) - ((LC(H) * Q) exquo c)::polR
               else
                  X * H
          -- H = s_e * X^i mod S_d-1
          A := coefficient(P, i) * H + A
       while degree(P) >= e repeat P := reductum(P)
       A := A + se * P            --  A = s_e * reductum(P_0)       mod S_d-1
       A := (A exquo lcP)::polR   --  A = s_e * reductum(S_d) / s_d mod S_d-1
       A := if degree(H) = e-1 then 
               c * (X * reductum(H) + A) - LC(H) * Q
            else
               c * (X * H + A)
       A := (A exquo s)::polR                    -- A = +/- S_e-1
       return (if odd?(d-e) then A else - A)

    next_sousResultant3(VP : Vector(polR), VQ : Vector(polR), s : R, ss : R) :
                                                      Vector(polR) ==
       -- P ~ S_d,  Q = S_d-1,  s = lc(S_d),  ss = lc(S_e)
       (P, Q) := (VP.1, VQ.1)
       (lcP, c) := (LC(P), LC(Q))
       e : NNI := degree(Q)
       if ((delta := degree(P) - e) = 1) then                   -- algo_new
         VP := c * VP - coefficient(P, e) * VQ
         VP := VP exquo lcP
         VP := c * (VP - X * VQ) + coefficient(Q, (e-1)::NNI) * VQ
         VP := VP exquo s
       else                                    -- algorithm of Lickteig - Roy
         (r, rr) := (s * lcP, ss * c)
         divid := divide(rr * P, Q)
         VP.1 := (divid.remainder exquo r)::polR
         for i in 2..#VP repeat
           VP.i := rr * VP.i - VQ.i * divid.quotient
           VP.i := (VP.i exquo r)::polR
       return (if odd?(delta) then VP else - VP)

    algo_new(P : polR, Q : polR) : R ==
       delta : NNI := (degree(P) - degree(Q))::NNI
       s : R := LC(Q)**delta
       (P, Q) := (Q, pseudoRemainder(P, -Q))
       repeat      
          -- P = S_c-1 (except the first turn : P ~ S_c-1), 
          -- Q = S_d-1,  s = lc(S_d)
          zero?(Q) => return 0
          delta := (degree(P) - degree(Q))::NNI
          Z : polR := Lazard2(Q, LC(Q), s, delta)          
          -- Z = S_e ~ S_d-1
          zero?(degree(Z)) => return LC(Z)
          (P, Q) := (Q, next_sousResultant2(P, Q, Z, s))
          s := LC(Z)

    resultant(P : polR, Q : polR) : R ==
       zero?(Q) or zero?(P) => 0
       if degree(P) < degree(Q) then 
          (P, Q) := (Q, P)
          if odd?(degree(P)) and odd?(degree(Q)) then Q := - Q
       zero?(degree(Q)) => LC(Q)**degree(P)
       -- degree(P) >= degree(Q) > 0
       R has Finite => resultant_naif(P, Q)
       return algo_new(P, Q)

    subResultantEuclidean(P : polR, Q : polR) :
                          Record(coef1 : polR, coef2 : polR, resultant : R) ==
       s : R := LC(Q)**(degree(P) - degree(Q))::NNI
       VP : Vector(polR) := [Q, 0::polR, 1::polR]
       pdiv := pseudoDivide(P, -Q)
       VQ : Vector(polR) := [pdiv.remainder, pdiv.coef::polR, pdiv.quotient]
       repeat
          --  VP.1 = S_{c-1},  VQ.1 = S_{d-1},  s=lc(S_d)
          --  S_{c-1} = VP.2 P_0 + VP.3 Q_0,  S_{d-1} = VQ.2 P_0 + VQ.3 Q_0
          (P, Q) := (VP.1, VQ.1)
          zero?(Q) => return construct(0::polR, 0::polR, 0::R)
          e : NNI := degree(Q)
          delta : NNI := (degree(P) - e)::NNI
          if zero?(e) then
             l : Vector(polR) := Lazard3(VQ, LC(Q), s, delta)
             return construct(l.2, l.3, LC(l.1))
          ss : R := Lazard(LC(Q), s, delta)
          (VP, VQ) := (VQ, next_sousResultant3(VP, VQ, s, ss))
          s := ss

    resultantEuclidean(P : polR, Q : polR) : 
                       Record(coef1 : polR, coef2 : polR, resultant : R) ==
       zero?(P) or zero?(Q) => construct(0::polR, 0::polR, 0::R)
       if degree(P) < degree(Q) then 
          e : Integer := if odd?(degree(P)) and odd?(degree(Q)) then -1 else 1
          l := resultantEuclidean(Q, e * P)
          return construct(e * l.coef2, l.coef1, l.resultant)
       if zero?(degree(Q)) then
          degP : NNI := degree(P)
          zero?(degP) => error("resultantEuclidean$PRS : constant polynomials")
          s : R := LC(Q)**(degP-1)::NNI
          return construct(0::polR, s::polR, s * LC(Q))
       R has Finite => resultantEuclidean_naif(P, Q)
       return subResultantEuclidean(P,Q)

    semiSubResultantEuclidean(P : polR, Q : polR) :
                       Record(coef2 : polR, resultant : R) ==
       s : R := LC(Q)**(degree(P) - degree(Q))::NNI
       VP : Vector(polR) := [Q, 1::polR]
       pdiv := pseudoDivide(P, -Q)
       VQ : Vector(polR) := [pdiv.remainder, pdiv.quotient]
       repeat
          --  VP.1 = S_{c-1},  VQ.1 = S_{d-1},  s=lc(S_d)
          --  S_{c-1} = ...P_0 + VP.3 Q_0,  S_{d-1} = ...P_0 + VQ.3 Q_0
          (P, Q) := (VP.1, VQ.1)
          zero?(Q) => return construct(0::polR, 0::R)
          e : NNI := degree(Q)
          delta : NNI := (degree(P) - e)::NNI
          if zero?(e) then
             l : Vector(polR) := Lazard3(VQ, LC(Q), s, delta)
             return construct(l.2, LC(l.1))
          ss : R := Lazard(LC(Q), s, delta)
          (VP, VQ) := (VQ, next_sousResultant3(VP, VQ, s, ss))
          s := ss

    semiResultantEuclidean2(P : polR, Q : polR) : 
                       Record(coef2 : polR, resultant : R) ==
       zero?(P) or zero?(Q) => construct(0::polR, 0::R)
       degree(P) < degree(Q) => error("semiResultantEuclidean2 : bad degrees")
       if zero?(degree(Q)) then
          degP : NNI := degree(P)
          zero?(degP) => error("semiResultantEuclidean2: constant polynomials")
          s : R := LC(Q)**(degP-1)::NNI
          return construct(s::polR, s * LC(Q))
       R has Finite => semiResultantEuclidean_naif(P, Q)
       return semiSubResultantEuclidean(P,Q)

    semiResultantEuclidean1(P : polR, Q : polR) :
                       Record(coef1 : polR, resultant : R) ==
       result := resultantEuclidean(P,Q)
       [result.coef1, result.resultant]

    indiceSubResultant(P : polR, Q : polR, i : NNI) : polR == 
       zero?(Q) or zero?(P) => 0
       if degree(P) < degree(Q) then 
          (P, Q) := (Q, P)
          if odd?(degree(P)-i) and odd?(degree(Q)-i) then Q := - Q
       if i = degree(Q) then
          delta : NNI := (degree(P)-degree(Q))::NNI
          zero?(delta) => error("indiceSubResultant$PRS : bad degrees")
          s : R := LC(Q)**(delta-1)::NNI
          return s*Q
       i > degree(Q) => 0
       s : R := LC(Q)**(degree(P) - degree(Q))::NNI
       (P, Q) := (Q, pseudoRemainder(P, -Q))
       repeat
          -- P = S_{c-1} ~ S_d , Q = S_{d-1},  s = lc(S_d),  i < d
          (degP, degQ) := (degree(P), degree(Q))
          i = degP-1 => return Q
          zero?(Q) or (i > degQ) => return 0
          Z : polR := Lazard2(Q, LC(Q), s, (degP - degQ)::NNI)
          --  Z = S_e ~ S_d-1
          i = degQ => return Z
          (P, Q) := (Q, next_sousResultant2(P, Q, Z, s))
          s := LC(Z)

    indiceSubResultantEuclidean(P : polR, Q : polR, i : NNI) :
                    Record(coef1 : polR, coef2 : polR, subResultant : polR) == 
       zero?(Q) or zero?(P) => construct(0::polR, 0::polR, 0::polR)
       if degree(P) < degree(Q) then 
          e := if odd?(degree(P)-i) and odd?(degree(Q)-i) then -1 else 1
          l := indiceSubResultantEuclidean(Q, e * P, i)
          return construct(e * l.coef2, l.coef1, l.subResultant)
       if i = degree(Q) then
          delta : NNI := (degree(P)-degree(Q))::NNI
          zero?(delta) => 
                      error("indiceSubResultantEuclidean$PRS : bad degrees")
          s : R := LC(Q)**(delta-1)::NNI
          return construct(0::polR, s::polR, s * Q)
       i > degree(Q) => construct(0::polR, 0::polR, 0::polR)
       s : R := LC(Q)**(degree(P) - degree(Q))::NNI
       VP : Vector(polR) := [Q, 0::polR, 1::polR]
       pdiv := pseudoDivide(P, -Q)
       VQ : Vector(polR) := [pdiv.remainder, pdiv.coef::polR, pdiv.quotient]
       repeat
          --  VP.1 = S_{c-1},  VQ.1 = S_{d-1},  s=lc(S_d),  i < d
          --  S_{c-1} = VP.2 P_0 + VP.3 Q_0,  S_{d-1} = VQ.2 P_0 + VQ.3 Q_0
          (P, Q) := (VP.1, VQ.1)
          zero?(Q) => return construct(0::polR, 0::polR, 0::polR)
          (degP, degQ) := (degree(P), degree(Q))
          i = degP-1 => return construct(VQ.2, VQ.3, VQ.1)
          (i > degQ) => return construct(0::polR, 0::polR, 0::polR)
          VZ := Lazard3(VQ, LC(Q), s, (degP - degQ)::NNI)
          i = degQ => return construct(VZ.2, VZ.3, VZ.1)
          ss : R := LC(VZ.1)
          (VP, VQ) := (VQ, next_sousResultant3(VP, VQ, s, ss))
          s := ss

    semiIndiceSubResultantEuclidean(P : polR, Q : polR, i : NNI) :
                    Record(coef2 : polR, subResultant : polR) == 
       zero?(Q) or zero?(P) => construct(0::polR, 0::polR)
       degree(P) < degree(Q) => 
                  error("semiIndiceSubResultantEuclidean$PRS : bad degrees")
       if i = degree(Q) then
          delta : NNI := (degree(P)-degree(Q))::NNI
          zero?(delta) => 
                  error("semiIndiceSubResultantEuclidean$PRS : bad degrees")
          s : R := LC(Q)**(delta-1)::NNI
          return construct(s::polR, s * Q)
       i > degree(Q) => construct(0::polR, 0::polR)
       s : R := LC(Q)**(degree(P) - degree(Q))::NNI
       VP : Vector(polR) := [Q, 1::polR]
       pdiv := pseudoDivide(P, -Q)
       VQ : Vector(polR) := [pdiv.remainder, pdiv.quotient]
       repeat
          --  VP.1 = S_{c-1},  VQ.1 = S_{d-1},  s = lc(S_d),  i < d
          --  S_{c-1} = ...P_0 + VP.2 Q_0,  S_{d-1} = ...P_0 + ...Q_0
          (P, Q) := (VP.1, VQ.1)
          zero?(Q) => return construct(0::polR, 0::polR)
          (degP, degQ) := (degree(P), degree(Q))
          i = degP-1 => return construct(VQ.2, VQ.1)
          (i > degQ) => return construct(0::polR, 0::polR)
          VZ := Lazard3(VQ, LC(Q), s, (degP - degQ)::NNI)
          i = degQ => return construct(VZ.2, VZ.1)
          ss : R := LC(VZ.1)
          (VP, VQ) := (VQ, next_sousResultant3(VP, VQ, s, ss))
          s := ss

    degreeSubResultant(P : polR, Q : polR, i : NNI) : polR == 
       zero?(Q) or zero?(P) => 0
       if degree(P) < degree(Q) then (P, Q) := (Q, P)
       if i = degree(Q) then
          delta : NNI := (degree(P)-degree(Q))::NNI
          zero?(delta) => error("degreeSubResultant$PRS : bad degrees")
          s : R := LC(Q)**(delta-1)::NNI
          return s*Q
       i > degree(Q) => 0
       s : R := LC(Q)**(degree(P) - degree(Q))::NNI
       (P, Q) := (Q, pseudoRemainder(P, -Q))
       repeat
          -- P = S_{c-1},  Q = S_{d-1},  s = lc(S_d)
          zero?(Q) or (i > degree(Q)) => return 0
          i = degree(Q) => return Q
          Z : polR := Lazard2(Q, LC(Q), s, (degree(P) - degree(Q))::NNI)
          --  Z = S_e ~ S_d-1
          (P, Q) := (Q, next_sousResultant2(P, Q, Z, s))
          s := LC(Z)

    degreeSubResultantEuclidean(P : polR, Q : polR, i : NNI) : 
                     Record(coef1 : polR, coef2 : polR, subResultant : polR) ==
       zero?(Q) or zero?(P) => construct(0::polR, 0::polR, 0::polR)
       if degree(P) < degree(Q) then 
          l := degreeSubResultantEuclidean(Q, P, i)
          return construct(l.coef2, l.coef1, l.subResultant)
       if i = degree(Q) then
          delta : NNI := (degree(P)-degree(Q))::NNI
          zero?(delta) => 
                      error("degreeSubResultantEuclidean$PRS : bad degrees")
          s : R := LC(Q)**(delta-1)::NNI
          return construct(0::polR, s::polR, s * Q)
       i > degree(Q) => construct(0::polR, 0::polR, 0::polR)
       s : R := LC(Q)**(degree(P) - degree(Q))::NNI
       VP : Vector(polR) := [Q, 0::polR, 1::polR]
       pdiv := pseudoDivide(P, -Q)
       VQ : Vector(polR) := [pdiv.remainder, pdiv.coef::polR, pdiv.quotient]
       repeat
          --  VP.1 = S_{c-1},  VQ.1 = S_{d-1},  s=lc(S_d)
          --  S_{c-1} = ...P_0 + VP.3 Q_0,  S_{d-1} = ...P_0 + VQ.3 Q_0
          (P, Q) := (VP.1, VQ.1)
          zero?(Q) or (i > degree(Q)) => 
               return construct(0::polR, 0::polR, 0::polR)
          i = degree(Q) => return construct(VQ.2, VQ.3, VQ.1)
          ss : R := Lazard(LC(Q), s, (degree(P)-degree(Q))::NNI)
          (VP, VQ) := (VQ, next_sousResultant3(VP, VQ, s, ss))
          s := ss

    semiDegreeSubResultantEuclidean(P : polR, Q : polR, i : NNI) : 
                     Record(coef2 : polR, subResultant : polR) ==
       zero?(Q) or zero?(P) => construct(0::polR, 0::polR)
       degree(P) < degree(Q) =>
                  error("semiDegreeSubResultantEuclidean$PRS : bad degrees")
       if i = degree(Q) then
          delta : NNI := (degree(P)-degree(Q))::NNI
          zero?(delta) => 
                  error("semiDegreeSubResultantEuclidean$PRS : bad degrees")
          s : R := LC(Q)**(delta-1)::NNI
          return construct(s::polR, s * Q)
       i > degree(Q) => construct(0::polR, 0::polR)
       s : R := LC(Q)**(degree(P) - degree(Q))::NNI
       VP : Vector(polR) := [Q, 1::polR]
       pdiv := pseudoDivide(P, -Q)
       VQ : Vector(polR) := [pdiv.remainder, pdiv.quotient]
       repeat
          --  VP.1 = S_{c-1},  VQ.1 = S_{d-1},  s=lc(S_d)
          --  S_{c-1} = ...P_0 + VP.3 Q_0,  S_{d-1} = ...P_0 + VQ.3 Q_0
          (P, Q) := (VP.1, VQ.1)
          zero?(Q) or (i > degree(Q)) => 
               return construct(0::polR, 0::polR)
          i = degree(Q) => return construct(VQ.2, VQ.1)
          ss : R := Lazard(LC(Q), s, (degree(P)-degree(Q))::NNI)
          (VP, VQ) := (VQ, next_sousResultant3(VP, VQ, s, ss))
          s := ss

    lastSubResultant(P : polR, Q : polR) : polR ==
       zero?(Q) or zero?(P) => 0
       if degree(P) < degree(Q) then (P, Q) := (Q, P)
       zero?(degree(Q)) => (LC(Q)**degree(P))::polR
       s : R := LC(Q)**(degree(P) - degree(Q))::NNI
       (P, Q) := (Q, pseudoRemainder(P, -Q))
       Z : polR := P
       repeat
          -- Z = S_d  (except the first turn : Z = P)
          -- P = S_{c-1} ~ S_d,  Q = S_{d-1},  s = lc(S_d)
          zero?(Q) => return Z
          Z := Lazard2(Q, LC(Q), s, (degree(P) - degree(Q))::NNI)
          -- Z = S_e ~ S_{d-1}
          zero?(degree(Z)) => return Z
          (P, Q) := (Q, next_sousResultant2(P, Q, Z, s))
          s := LC(Z)

    lastSubResultantEuclidean(P : polR, Q : polR) :
                    Record(coef1 : polR, coef2 : polR, subResultant : polR) == 
       zero?(Q) or zero?(P) => construct(0::polR, 0::polR, 0::polR)
       if degree(P) < degree(Q) then 
          l := lastSubResultantEuclidean(Q, P)
          return construct(l.coef2, l.coef1, l.subResultant)
       if zero?(degree(Q)) then
          degP : NNI := degree(P)
          zero?(degP) => 
              error("lastSubResultantEuclidean$PRS : constant polynomials")
          s : R := LC(Q)**(degP-1)::NNI
          return construct(0::polR, s::polR, s * Q)
       s : R := LC(Q)**(degree(P) - degree(Q))::NNI
       VP : Vector(polR) := [Q, 0::polR, 1::polR]
       pdiv := pseudoDivide(P, -Q)
       VQ : Vector(polR) := [pdiv.remainder, pdiv.coef::polR, pdiv.quotient]
       VZ : Vector(polR) := copy(VP)
       repeat
          --  VZ.1 = S_d,  VP.1 = S_{c-1},  VQ.1 = S_{d-1},  s = lc(S_d)
          --  S_{c-1} = VP.2 P_0 + VP.3 Q_0
          --  S_{d-1} = VQ.2 P_0 + VQ.3 Q_0
          --  S_d     = VZ.2 P_0 + VZ.3 Q_0
          (Q, Z) := (VQ.1, VZ.1)
          zero?(Q) => return construct(VZ.2, VZ.3, VZ.1)
          VZ := Lazard3(VQ, LC(Q), s, (degree(Z) - degree(Q))::NNI)
          zero?(degree(Q)) => return construct(VZ.2, VZ.3, VZ.1)
          ss : R := LC(VZ.1)
          (VP, VQ) := (VQ, next_sousResultant3(VP, VQ, s, ss))
          s := ss

    semiLastSubResultantEuclidean(P : polR, Q : polR) :
                    Record(coef2 : polR, subResultant : polR) == 
       zero?(Q) or zero?(P) => construct(0::polR, 0::polR)
       degree(P) < degree(Q) =>
              error("semiLastSubResultantEuclidean$PRS : bad degrees")
       if zero?(degree(Q)) then
          degP : NNI := degree(P)
          zero?(degP) => 
              error("semiLastSubResultantEuclidean$PRS : constant polynomials")
          s : R := LC(Q)**(degP-1)::NNI
          return construct(s::polR, s * Q)
       s : R := LC(Q)**(degree(P) - degree(Q))::NNI
       VP : Vector(polR) := [Q, 1::polR]
       pdiv := pseudoDivide(P, -Q)
       VQ : Vector(polR) := [pdiv.remainder, pdiv.quotient]
       VZ : Vector(polR) := copy(VP)
       repeat
          --  VZ.1 = S_d,  VP.1 = S_{c-1},  VQ.1 = S_{d-1},  s = lc(S_d)
          --  S_{c-1} = ... P_0 + VP.2 Q_0
          --  S_{d-1} = ... P_0 + VQ.2 Q_0
          --  S_d     = ... P_0 + VZ.2 Q_0
          (Q, Z) := (VQ.1, VZ.1)
          zero?(Q) => return construct(VZ.2, VZ.1)
          VZ := Lazard3(VQ, LC(Q), s, (degree(Z) - degree(Q))::NNI)
          zero?(degree(Q)) => return construct(VZ.2, VZ.1)
          ss : R := LC(VZ.1)
          (VP, VQ) := (VQ, next_sousResultant3(VP, VQ, s, ss))
          s := ss

    chainSubResultants(P : polR, Q : polR) : List(polR) ==
       zero?(Q) or zero?(P) => []
       if degree(P) < degree(Q) then 
          (P, Q) := (Q, P)
          if odd?(degree(P)) and odd?(degree(Q)) then Q := - Q
       L : List(polR) := []
       zero?(degree(Q)) => L
       L := [Q]
       s : R := LC(Q)**(degree(P) - degree(Q))::NNI
       (P, Q) := (Q, pseudoRemainder(P, -Q))
       repeat
          -- P = S_{c-1},  Q = S_{d-1},  s = lc(S_d)
          -- L = [S_d,....,S_{q-1}]
          zero?(Q) => return L
          L := concat(Q, L)
          -- L = [S_{d-1},....,S_{q-1}]
          delta : NNI := (degree(P) - degree(Q))::NNI
          Z : polR := Lazard2(Q, LC(Q), s, delta)            -- Z = S_e ~ S_d-1
          if delta > 1 then L := concat(Z, L)
          -- L = [S_e,....,S_{q-1}]
          zero?(degree(Z)) => return L
          (P, Q) := (Q, next_sousResultant2(P, Q, Z, s))
          s := LC(Z)

    schema(P : polR, Q : polR) : List(NNI) ==
       zero?(Q) or zero?(P) => []
       if degree(P) < degree(Q) then (P, Q) := (Q, P)
       zero?(degree(Q)) => [0]
       L : List(NNI) := []
       s : R := LC(Q)**(degree(P) - degree(Q))::NNI
       (P, Q) := (Q, pseudoRemainder(P, Q))
       repeat
          -- P = S_{c-1} ~ S_d,  Q = S_{d-1},  s = lc(S_d)
          zero?(Q) => return L
          e : NNI := degree(Q)
          L := concat(e, L)
          delta : NNI := (degree(P) - e)::NNI
          Z : polR := Lazard2(Q, LC(Q), s, delta)            -- Z = S_e ~ S_d-1
          if delta > 1 then L := concat(e, L)
          zero?(e) => return L
          (P, Q) := (Q, next_sousResultant2(P, Q, Z, s))
          s := LC(Z)

    subResultantGcd(P : polR, Q : polR) : polR == 
       zero?(P) and zero?(Q) => 0
       zero?(P) => Q
       zero?(Q) => P
       if degree(P) < degree(Q) then (P, Q) := (Q, P)
       zero?(degree(Q)) => 1$polR
       s : R := LC(Q)**(degree(P) - degree(Q))::NNI
       (P, Q) := (Q, pseudoRemainder(P, -Q))
       repeat
          -- P = S_{c-1},  Q = S_{d-1},  s = lc(S_d)
          zero?(Q) => return P
          zero?(degree(Q)) => return 1$polR
          Z : polR := Lazard2(Q, LC(Q), s, (degree(P) - degree(Q))::NNI) 
          -- Z = S_e ~ S_d-1
          (P, Q) := (Q, next_sousResultant2(P, Q, Z, s))
          s := LC(Z)
            
    subResultantGcdEuclidean(P : polR, Q : polR) :
                    Record(coef1 : polR, coef2 : polR, gcd : polR) ==
       zero?(P) and zero?(Q) => construct(0::polR, 0::polR, 0::polR)
       zero?(P) => construct(0::polR, 1::polR, Q)
       zero?(Q) => construct(1::polR, 0::polR, P)
       if degree(P) < degree(Q) then 
          l := subResultantGcdEuclidean(Q, P)
          return construct(l.coef2, l.coef1, l.gcd)
       zero?(degree(Q)) => construct(0::polR, 1::polR, Q)
       s : R := LC(Q)**(degree(P) - degree(Q))::NNI
       VP : Vector(polR) := [Q, 0::polR, 1::polR]
       pdiv := pseudoDivide(P, -Q)
       VQ : Vector(polR) := [pdiv.remainder, pdiv.coef::polR, pdiv.quotient]
       repeat
          --  VP.1 = S_{c-1},  VQ.1 = S_{d-1},  s=lc(S_d)
          --  S_{c-1} = VP.2 P_0 + VP.3 Q_0,  S_{d-1} = VQ.2 P_0 + VQ.3 Q_0
          (P, Q) := (VP.1, VQ.1)
          zero?(Q) => return construct(VP.2, VP.3, P)
          e : NNI := degree(Q)
          zero?(e) => return construct(VQ.2, VQ.3, Q)
          ss := Lazard(LC(Q), s, (degree(P) - e)::NNI)
          (VP,VQ) := (VQ, next_sousResultant3(VP, VQ, s, ss))
          s := ss

    semiSubResultantGcdEuclidean2(P : polR, Q : polR) :
                                  Record(coef2 : polR, gcd : polR) ==
       zero?(P) and zero?(Q) => construct(0::polR, 0::polR)
       zero?(P) => construct(1::polR, Q)
       zero?(Q) => construct(0::polR, P)
       degree(P) < degree(Q) => 
                       error("semiSubResultantGcdEuclidean2$PRS : bad degrees")
       zero?(degree(Q)) => construct(1::polR, Q)
       s : R := LC(Q)**(degree(P) - degree(Q))::NNI
       VP : Vector(polR) := [Q, 1::polR]
       pdiv := pseudoDivide(P, -Q)
       VQ : Vector(polR) := [pdiv.remainder, pdiv.quotient]
       repeat
          --  P=S_{c-1},  Q=S_{d-1},  s=lc(S_d)
          --  S_{c-1} = ? P_0 + old_cf2 Q_0,  S_{d-1} = ? P_0 + cf2 Q_0
          (P, Q) := (VP.1, VQ.1)
          zero?(Q) => return construct(VP.2, P)
          e : NNI := degree(Q)
          zero?(e) => return construct(VQ.2, Q)
          ss := Lazard(LC(Q), s, (degree(P) - e)::NNI)
          (VP,VQ) := (VQ, next_sousResultant3(VP, VQ, s, ss))
          s := ss

    semiSubResultantGcdEuclidean1(P : polR, Q : polR) :
                       Record(coef1 : polR, gcd : polR) ==
       result := subResultantGcdEuclidean(P,Q)
       [result.coef1, result.gcd]

    discriminant(P : polR) : R ==
       d : Integer := degree(P)
       zero?(d) => error "cannot take discriminant of constants"
       a : Integer := (d * (d-1)) quo 2
       a := (-1)**a::NonNegativeInteger
       dP : polR := differentiate P
       r : R := resultant(P, dP)
       d := d - degree(dP) - 1
       return (if zero?(d) then a * (r exquo LC(P))::R
               else a * r * LC(P)**(d-1)::NNI)

    discriminantEuclidean(P : polR) : 
                       Record(coef1 : polR, coef2 : polR, discriminant : R) ==
       d : Integer := degree(P)
       zero?(d) => error "cannot take discriminant of constants"
       a : Integer := (d * (d-1)) quo 2
       a := (-1)**a::NonNegativeInteger
       dP : polR := differentiate P
       rE := resultantEuclidean(P, dP)
       d := d - degree(dP) - 1
       if zero?(d) then 
          c1 : polR := a * (rE.coef1 exquo LC(P))::polR
          c2 : polR := a * (rE.coef2 exquo LC(P))::polR
          cr : R := a * (rE.resultant exquo LC(P))::R
       else
          c1 : polR := a * rE.coef1 * LC(P)**(d-1)::NNI
          c2 : polR := a * rE.coef2 * LC(P)**(d-1)::NNI
          cr : R := a * rE.resultant * LC(P)**(d-1)::NNI
       return construct(c1, c2, cr)

    semiDiscriminantEuclidean(P : polR) : 
                            Record(coef2 : polR, discriminant : R) ==
       d : Integer := degree(P)
       zero?(d) => error "cannot take discriminant of constants"
       a : Integer := (d * (d-1)) quo 2
       a := (-1)**a::NonNegativeInteger
       dP : polR := differentiate P
       rE := semiResultantEuclidean2(P, dP)
       d := d - degree(dP) - 1
       if zero?(d) then 
          c2 : polR := a * (rE.coef2 exquo LC(P))::polR
          cr : R := a * (rE.resultant exquo LC(P))::R
       else
          c2 : polR := a * rE.coef2 * LC(P)**(d-1)::NNI
          cr : R := a * rE.resultant * LC(P)**(d-1)::NNI
       return construct(c2, cr)

    if R has GcdDomain then

       resultantReduit(P : polR, Q : polR) : R ==
          UV := subResultantGcdEuclidean(P, Q)
          UVs : polR := UV.gcd
          degree(UVs) > 0 => 0
          l : List(R) := concat(coefficients(UV.coef1), coefficients(UV.coef2))
          return (LC(UVs) exquo gcd(l))::R

       resultantReduitEuclidean(P : polR, Q : polR) :
                     Record(coef1 : polR, coef2 : polR, resultantReduit : R) ==
          UV := subResultantGcdEuclidean(P, Q)
          UVs : polR := UV.gcd
          degree(UVs) > 0 => construct(0::polR, 0::polR, 0::R)
          l : List(R) := concat(coefficients(UV.coef1), coefficients(UV.coef2))
          gl : R := gcd(l)
          c1 : polR := (UV.coef1 exquo gl)::polR
          c2 : polR := (UV.coef2 exquo gl)::polR
          rr : R := (LC(UVs) exquo gl)::R
          return construct(c1, c2, rr)

       semiResultantReduitEuclidean(P : polR, Q : polR) :
                                   Record(coef2 : polR, resultantReduit : R) ==
          UV := subResultantGcdEuclidean(P, Q)
          UVs : polR := UV.gcd
          degree(UVs) > 0 => construct(0::polR, 0::R)
          l : List(R) := concat(coefficients(UV.coef1), coefficients(UV.coef2))
          gl : R := gcd(l)
          c2 : polR := (UV.coef2 exquo gl)::polR
          rr : R := (LC(UVs) exquo gl)::R
          return construct(c2, rr)

       gcd_naif(P : polR, Q : polR) : polR ==
          -- valid over a field
          zero?(P) => (Q exquo LC(Q))::polR
          repeat
             zero?(Q) => return (P exquo LC(P))::polR
             zero?(degree(Q)) => return 1$polR
             (P, Q) := (Q, divide(P, Q).remainder)

       gcd(P : polR, Q : polR) : polR ==
          R has Finite => gcd_naif(P,Q) 
          zero?(P) => Q
          zero?(Q) => P
          cP : R := content(P)
          cQ : R := content(Q)
          P := (P exquo cP)::polR
          Q := (Q exquo cQ)::polR
          G : polR := subResultantGcd(P, Q)
          return gcd(cP,cQ) * primitivePart(G)