/usr/share/axiom-20170501/src/algebra/PSETCAT.spad is in axiom-source 20170501-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 | )abbrev category PSETCAT PolynomialSetCategory
++ Author: Marc Moreno Maza
++ Date Created: 04/26/1994
++ Date Last Updated: 12/15/1998
++ Description:
++ A category for finite subsets of a polynomial ring.
++ Such a set is only regarded as a set of polynomials and not
++ identified to the ideal it generates. So two distinct sets may
++ generate the same the ideal. Furthermore, for \spad{R} being an
++ integral domain, a set of polynomials may be viewed as a representation
++ of the ideal it generates in the polynomial ring \spad{(R)^(-1) P},
++ or the set of its zeros (described for instance by the radical of the
++ previous ideal, or a split of the associated affine variety) and so on.
++ So this category provides operations about those different notions.
PolynomialSetCategory(R,E,VarSet,P) : Category == SIG where
R : Ring
E : OrderedAbelianMonoidSup
VarSet : OrderedSet
P : RecursivePolynomialCategory(R,E,VarSet)
SC ==> SetCategory
CO ==> Collection(P)
CT ==> CoercibleTo(List(P))
SIG ==> Join(SC,CO,CT) with
finiteAggregate
retractIfCan : List(P) -> Union($,"failed")
++ \axiom{retractIfCan(lp)} returns an element of the domain
++ whose elements are the members of \axiom{lp} if such an element
++ exists, otherwise \axiom{"failed"} is returned.
retract : List(P) -> $
++ \axiom{retract(lp)} returns an element of the domain whose elements
++ are the members of \axiom{lp} if such an element exists, otherwise
++ an error is produced.
mvar : $ -> VarSet
++ \axiom{mvar(ps)} returns the main variable of the non constant
++ polynomial with the greatest main variable, if any, else an
++ error is returned.
variables : $ -> List VarSet
++ \axiom{variables(ps)} returns the decreasingly sorted list of the
++ variables which are variables of some polynomial in \axiom{ps}.
mainVariables : $ -> List VarSet
++ \axiom{mainVariables(ps)} returns the decreasingly sorted list
++ of the variables which are main variables of some polynomial
++ in \axiom{ps}.
mainVariable? : (VarSet,$) -> Boolean
++ \axiom{mainVariable?(v,ps)} returns true iff \axiom{v} is the
++ main variable of some polynomial in \axiom{ps}.
collectUnder : ($,VarSet) -> $
++ \axiom{collectUnder(ps,v)} returns the set consisting of the
++ polynomials of \axiom{ps} with main variable less than \axiom{v}.
collect : ($,VarSet) -> $
++ \axiom{collect(ps,v)} returns the set consisting of the
++ polynomials of \axiom{ps} with \axiom{v} as main variable.
collectUpper : ($,VarSet) -> $
++ \axiom{collectUpper(ps,v)} returns the set consisting of the
++ polynomials of \axiom{ps} with main variable greater
++ than \axiom{v}.
sort : ($,VarSet) -> Record(under:$,floor:$,upper:$)
++ \axiom{sort(v,ps)} returns \axiom{us,vs,ws} such that \axiom{us}
++ is \axiom{collectUnder(ps,v)}, \axiom{vs} is \axiom{collect(ps,v)}
++ and \axiom{ws} is \axiom{collectUpper(ps,v)}.
trivialIdeal? : $ -> Boolean
++ \axiom{trivialIdeal?(ps)} returns true iff \axiom{ps} does
++ not contain non-zero elements.
if R has IntegralDomain then
roughBase? : $ -> Boolean
++ \axiom{roughBase?(ps)} returns true iff for every pair
++ \axiom{{p,q}} of polynomials in \axiom{ps} their leading
++ monomials are relatively prime.
roughSubIdeal? : ($,$) -> Boolean
++ \axiom{roughSubIdeal?(ps1,ps2)} returns true iff it can proved
++ that all polynomials in \axiom{ps1} lie in the ideal generated
++ by \axiom{ps2} in \axiom{\axiom{(R)^(-1) P}} without computing
++ Groebner bases.
roughEqualIdeals? : ($,$) -> Boolean
++ \axiom{roughEqualIdeals?(ps1,ps2)} returns true iff it can
++ proved that \axiom{ps1} and \axiom{ps2} generate the same ideal
++ in \axiom{(R)^(-1) P} without computing Groebner bases.
roughUnitIdeal? : $ -> Boolean
++ \axiom{roughUnitIdeal?(ps)} returns true iff \axiom{ps} contains
++ some non null element lying in the base ring \axiom{R}.
headRemainder : (P,$) -> Record(num:P,den:R)
++ \axiom{headRemainder(a,ps)} returns \axiom{[b,r]} such that the
++ leading monomial of \axiom{b} is reduced in the sense of
++ Groebner bases w.r.t. \axiom{ps} and \axiom{r*a - b} lies in
++ the ideal generated by \axiom{ps}.
remainder : (P,$) -> Record(rnum:R,polnum:P,den:R)
++ \axiom{remainder(a,ps)} returns \axiom{[c,b,r]} such that
++ \axiom{b} is fully reduced in the sense of Groebner bases
++ w.r.t. \axiom{ps}, \axiom{r*a - c*b} lies in the ideal
++ generated by \axiom{ps}. Furthermore, if \axiom{R} is a
++ gcd-domain, \axiom{b} is primitive.
rewriteIdealWithHeadRemainder : (List(P),$) -> List(P)
++ \axiom{rewriteIdealWithHeadRemainder(lp,cs)} returns \axiom{lr}
++ such that the leading monomial of every polynomial in \axiom{lr}
++ is reduced in the sense of Groebner bases w.r.t. \axiom{cs}
++ and \axiom{(lp,cs)} and \axiom{(lr,cs)} generate the same
++ ideal in \axiom{(R)^(-1) P}.
rewriteIdealWithRemainder : (List(P),$) -> List(P)
++ \axiom{rewriteIdealWithRemainder(lp,cs)} returns \axiom{lr}
++ such that every polynomial in \axiom{lr} is fully reduced in
++ the sense of Groebner bases w.r.t. \axiom{cs} and
++ \axiom{(lp,cs)} and \axiom{(lr,cs)} generate the same ideal
++ in \axiom{(R)^(-1) P}.
triangular? : $ -> Boolean
++ \axiom{triangular?(ps)} returns true iff \axiom{ps} is a
++ triangular set, that is, two distinct polynomials have distinct
++ main variables and no constant lies in \axiom{ps}.
add
NNI ==> NonNegativeInteger
B ==> Boolean
elements: $ -> List(P)
elements(ps:$):List(P) ==
lp : List(P) := members(ps)$$
variables1(lp:List(P)):(List VarSet) ==
lvars : List(List(VarSet)) := [variables(p)$P for p in lp]
sort((z1:VarSet,z2:VarSet):Boolean +-> z1 > z2,
removeDuplicates(concat(lvars)$List(VarSet)))
variables2(lp:List(P)):(List VarSet) ==
lvars : List(VarSet) := [mvar(p)$P for p in lp]
sort((z1:VarSet,z2:VarSet):Boolean +-> z1 > z2,
removeDuplicates(lvars)$List(VarSet))
variables (ps:$) ==
variables1(elements(ps))
mainVariables (ps:$) ==
variables2(remove(ground?,elements(ps)))
mainVariable? (v,ps) ==
lp : List(P) := remove(ground?,elements(ps))
while (not empty? lp) and (not (mvar(first(lp)) = v)) repeat
lp := rest lp
(not empty? lp)
collectUnder (ps,v) ==
lp : List P := elements(ps)
lq : List P := []
while (not empty? lp) repeat
p := first lp
lp := rest lp
if (ground?(p)) or (mvar(p) < v)
then
lq := cons(p,lq)
construct(lq)$$
collectUpper (ps,v) ==
lp : List P := elements(ps)
lq : List P := []
while (not empty? lp) repeat
p := first lp
lp := rest lp
if (not ground?(p)) and (mvar(p) > v)
then
lq := cons(p,lq)
construct(lq)$$
collect (ps,v) ==
lp : List P := elements(ps)
lq : List P := []
while (not empty? lp) repeat
p := first lp
lp := rest lp
if (not ground?(p)) and (mvar(p) = v)
then
lq := cons(p,lq)
construct(lq)$$
sort (ps,v) ==
lp : List P := elements(ps)
us : List P := []
vs : List P := []
ws : List P := []
while (not empty? lp) repeat
p := first lp
lp := rest lp
if (ground?(p)) or (mvar(p) < v)
then
us := cons(p,us)
else
if (mvar(p) = v)
then
vs := cons(p,vs)
else
ws := cons(p,ws)
[construct(us)$$,_
construct(vs)$$,_
construct(ws)$$]$Record(under:$,floor:$,upper:$)
ps1 = ps2 ==
{p for p in elements(ps1)} =$(Set P) {p for p in elements(ps2)}
exactQuo : (R,R) -> R
localInf? (p:P,q:P):B ==
degree(p) <$E degree(q)
localTriangular? (lp:List(P)):B ==
lp := remove(zero?, lp)
empty? lp => true
any? (ground?, lp) => false
lp := sort((z1:P,z2:P):Boolean +-> mvar(z1)$P > mvar(z2)$P, lp)
p,q : P
p := first lp
lp := rest lp
while (not empty? lp) and (mvar(p) > mvar((q := first(lp)))) repeat
p := q
lp := rest lp
empty? lp
triangular? ps ==
localTriangular? elements ps
trivialIdeal? ps ==
empty?(remove(zero?,elements(ps))$(List(P)))$(List(P))
if R has IntegralDomain
then
roughUnitIdeal? ps ==
any?(ground?,remove(zero?,elements(ps))$(List(P)))$(List P)
relativelyPrimeLeadingMonomials? (p:P,q:P):B ==
dp : E := degree(p)
dq : E := degree(q)
(sup(dp,dq)$E =$E dp +$E dq)@B
roughBase? ps ==
lp := remove(zero?,elements(ps))$(List(P))
empty? lp => true
rB? : B := true
while (not empty? lp) and rB? repeat
p := first lp
lp := rest lp
copylp := lp
while (not empty? copylp) and rB? repeat
rB? := relativelyPrimeLeadingMonomials?(p,first(copylp))
copylp := rest copylp
rB?
roughSubIdeal?(ps1,ps2) ==
lp: List(P) := rewriteIdealWithRemainder(elements(ps1),ps2)
empty? (remove(zero?,lp))
roughEqualIdeals? (ps1,ps2) ==
ps1 =$$ ps2 => true
roughSubIdeal?(ps1,ps2) and roughSubIdeal?(ps2,ps1)
if (R has GcdDomain) and (VarSet has ConvertibleTo (Symbol))
then
LPR ==> List Polynomial R
LS ==> List Symbol
if R has EuclideanDomain
then
exactQuo(r:R,s:R):R ==
r quo$R s
else
exactQuo(r:R,s:R):R ==
(r exquo$R s)::R
headRemainder (a,ps) ==
lp1 : List(P) := remove(zero?, elements(ps))$(List(P))
empty? lp1 => [a,1$R]
any?(ground?,lp1) => [reductum(a),1$R]
r : R := 1$R
lp1 := sort(localInf?, reverse elements(ps))
lp2 := lp1
e : Union(E, "failed")
while (not zero? a) and (not empty? lp2) repeat
p := first lp2
if ((e:= subtractIfCan(degree(a),degree(p))) case E)
then
g := gcd((lca := leadingCoefficient(a)),_
(lcp := leadingCoefficient(p)))$R
(lca,lcp) := (exactQuo(lca,g),exactQuo(lcp,g))
a := lcp * reductum(a) - monomial(lca, e::E)$P * reductum(p)
r := r * lcp
lp2 := lp1
else
lp2 := rest lp2
[a,r]
makeIrreducible! (frac:Record(num:P,den:R)):Record(num:P,den:R) ==
g := gcd(frac.den,frac.num)$P
(g = 1) => frac
frac.num := exactQuotient!(frac.num,g)
frac.den := exactQuo(frac.den,g)
frac
remainder (a,ps) ==
hRa := makeIrreducible! headRemainder (a,ps)
a := hRa.num
r : R := hRa.den
zero? a => [1$R,a,r]
b : P := monomial(1$R,degree(a))$P
c : R := leadingCoefficient(a)
while not zero?(a := reductum a) repeat
hRa := makeIrreducible! headRemainder (a,ps)
a := hRa.num
r := r * hRa.den
g := gcd(c,(lca := leadingCoefficient(a)))$R
b := ((hRa.den) * exactQuo(c,g)) * b + _
monomial(exactQuo(lca,g),degree(a))$P
c := g
[c,b,r]
rewriteIdealWithHeadRemainder(ps,cs) ==
trivialIdeal? cs => ps
roughUnitIdeal? cs => [0$P]
ps := remove(zero?,ps)
empty? ps => ps
any?(ground?,ps) => [1$P]
rs : List P := []
while not empty? ps repeat
p := first ps
ps := rest ps
p := (headRemainder(p,cs)).num
if not zero? p
then
if ground? p
then
ps := []
rs := [1$P]
else
primitivePart! p
rs := cons(p,rs)
removeDuplicates rs
rewriteIdealWithRemainder(ps,cs) ==
trivialIdeal? cs => ps
roughUnitIdeal? cs => [0$P]
ps := remove(zero?,ps)
empty? ps => ps
any?(ground?,ps) => [1$P]
rs : List P := []
while not empty? ps repeat
p := first ps
ps := rest ps
p := (remainder(p,cs)).polnum
if not zero? p
then
if ground? p
then
ps := []
rs := [1$P]
else
rs := cons(unitCanonical(p),rs)
removeDuplicates rs
|