This file is indexed.

/usr/share/axiom-20170501/src/algebra/PSETPK.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
)abbrev package PSETPK PolynomialSetUtilitiesPackage
++ Author: Marc Moreno Maza (marc@nag.co.uk)
++ Date Created: 12/01/1995
++ Date Last Updated: 12/15/1998
++ Description:
++ This package provides modest routines for polynomial system solving.
++ The aim of many of the operations of this package is to remove certain
++ factors in some polynomials in order to avoid unnecessary computations
++ in algorithms involving splitting techniques by partial factorization.

PolynomialSetUtilitiesPackage (R,E,V,P) : SIG == CODE where
  R : IntegralDomain
  E : OrderedAbelianMonoidSup
  V : OrderedSet
  P : RecursivePolynomialCategory(R,E,V)

  N ==> NonNegativeInteger
  Z ==> Integer
  B ==> Boolean
  LP ==> List P
  FP ==> Factored P
  T ==> GeneralTriangularSet(R,E,V,P)
  RRZ ==> Record(factor: P,exponent: Integer)
  RBT ==> Record(bas:T,top:LP)
  RUL ==> Record(chs:Union(T,"failed"),rfs:LP)
  GPS ==> GeneralPolynomialSet(R,E,V,P)
  pf ==> MultivariateFactorize(V, E, R, P)

  SIG ==> with
     
    removeRedundantFactors : LP -> LP
      ++ \axiom{removeRedundantFactors(lp)} returns \axiom{lq} such that if
      ++ \axiom{lp = [p1,...,pn]} and \axiom{lq = [q1,...,qm]}
      ++ then the product \axiom{p1*p2*...*pn} vanishes iff the product \axiom{q1*q2*...*qm} vanishes, 
      ++ and the product of degrees of the \axiom{qi} is not greater than 
      ++ the one of the \axiom{pj}, and no polynomial in \axiom{lq}
      ++ divides another polynomial in \axiom{lq}. In particular,
      ++ polynomials lying in the base ring \axiom{R} are removed.
      ++ Moreover, \axiom{lq} is sorted w.r.t \axiom{infRittWu?}.
      ++ Furthermore, if R is gcd-domain, the polynomials in \axiom{lq} are 
      ++ pairwise without common non trivial factor.

    removeRedundantFactors : (P,P) -> LP
      ++ \axiom{removeRedundantFactors(p,q)} returns the same as 
      ++ \axiom{removeRedundantFactors([p,q])}

    removeSquaresIfCan : LP -> LP
      ++ \axiom{removeSquaresIfCan(lp)} returns
      ++ \axiom{removeDuplicates [squareFreePart(p)$P for p in lp]}
      ++ if \axiom{R} is gcd-domain else returns \axiom{lp}.

    unprotectedRemoveRedundantFactors : (P,P) -> LP
      ++ \axiom{unprotectedRemoveRedundantFactors(p,q)} returns the same as 
      ++ \axiom{removeRedundantFactors(p,q)} but does assume that neither 
      ++ \axiom{p} nor \axiom{q} lie in the base ring \axiom{R} and assumes that
      ++ \axiom{infRittWu?(p,q)} holds. Moreover, if \axiom{R} is gcd-domain,
      ++ then \axiom{p} and \axiom{q} are assumed to be square free.

    removeRedundantFactors : (LP,P) -> LP
      ++ \axiom{removeRedundantFactors(lp,q)} returns the same as 
      ++ \axiom{removeRedundantFactors(cons(q,lp))} assuming
      ++ that \axiom{removeRedundantFactors(lp)} returns \axiom{lp}
      ++ up to replacing some polynomial \axiom{pj} in \axiom{lp}
      ++ by some some polynomial \axiom{qj} associated to \axiom{pj}.

    removeRedundantFactors : (LP,LP) -> LP
      ++ \axiom{removeRedundantFactors(lp,lq)} returns the same as
      ++ \axiom{removeRedundantFactors(concat(lp,lq))} assuming
      ++ that \axiom{removeRedundantFactors(lp)} returns \axiom{lp}
      ++ up to replacing some polynomial \axiom{pj} in \axiom{lp}
      ++ by some polynomial \axiom{qj} associated to \axiom{pj}.

    removeRedundantFactors : (LP,LP,(LP -> LP)) -> LP
      ++ \axiom{removeRedundantFactors(lp,lq,remOp)} returns the same as
      ++ \axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(lp,lq)),lq)}
      ++ assuming that \axiom{remOp(lq)} returns \axiom{lq} up to similarity.

    certainlySubVariety? : (LP,LP) -> B
      ++ \axiom{certainlySubVariety?(newlp,lp)} returns true iff for every \axiom{p}
      ++ in \axiom{lp} the remainder of \axiom{p} by \axiom{newlp} using the division algorithm
      ++ of Groebner techniques is zero.

    possiblyNewVariety? : (LP, List LP) -> B
      ++ \axiom{possiblyNewVariety?(newlp,llp)} returns true iff for every \axiom{lp} 
      ++ in \axiom{llp} certainlySubVariety?(newlp,lp) does not hold.

    probablyZeroDim? : LP -> B
      ++ \axiom{probablyZeroDim?(lp)} returns true iff the number of polynomials
      ++ in \axiom{lp} is not smaller than the number of variables occurring 
      ++ in these polynomials.

    selectPolynomials : ((P -> B),LP) -> Record(goodPols:LP,badPols:LP)
      ++ \axiom{selectPolynomials(pred?,ps)} returns \axiom{gps,bps} where 
      ++ \axiom{gps} is a list of the polynomial \axiom{p} in \axiom{ps}
      ++ such that \axiom{pred?(p)} holds and \axiom{bps} are the other ones.

    selectOrPolynomials : (List (P -> B),LP) -> Record(goodPols:LP,badPols:LP)
      ++ \axiom{selectOrPolynomials(lpred?,ps)} returns \axiom{gps,bps} where 
      ++ \axiom{gps} is a list of the polynomial \axiom{p} in \axiom{ps}
      ++ such that \axiom{pred?(p)} holds for some \axiom{pred?} in \axiom{lpred?}
      ++ and \axiom{bps} are the other ones.

    selectAndPolynomials : (List (P -> B),LP) -> Record(goodPols:LP,badPols:LP)
      ++ \axiom{selectAndPolynomials(lpred?,ps)} returns \axiom{gps,bps} where 
      ++ \axiom{gps} is a list of the polynomial \axiom{p} in \axiom{ps}
      ++ such that \axiom{pred?(p)} holds for every \axiom{pred?} in \axiom{lpred?}
      ++ and \axiom{bps} are the other ones.

    quasiMonicPolynomials : LP -> Record(goodPols:LP,badPols:LP)
      ++ \axiom{quasiMonicPolynomials(lp)} returns \axiom{qmps,nqmps} where 
      ++ \axiom{qmps} is a list of the quasi-monic polynomials in \axiom{lp}
      ++ and \axiom{nqmps} are the other ones.

    univariate? : P -> B
      ++ \axiom{univariate?(p)} returns true iff \axiom{p} involves one and 
      ++ only one variable.

    univariatePolynomials : LP -> Record(goodPols:LP,badPols:LP)
      ++ \axiom{univariatePolynomials(lp)} returns \axiom{ups,nups} where 
      ++ \axiom{ups} is a list of the univariate polynomials,
      ++ and \axiom{nups} are the other ones.

    linear? : P -> B
      ++ \axiom{linear?(p)} returns true iff \axiom{p} does not lie 
      ++ in the base ring \axiom{R} and has main degree \axiom{1}.

    linearPolynomials : LP -> Record(goodPols:LP,badPols:LP)
      ++ \axiom{linearPolynomials(lp)} returns \axiom{lps,nlps} where
      ++ \axiom{lps} is a list of the linear polynomials in lp,
      ++ and  \axiom{nlps} are the other ones.

    bivariate? : P -> B
      ++ \axiom{bivariate?(p)} returns true iff \axiom{p} involves two and 
      ++ only two variables.

    bivariatePolynomials : LP -> Record(goodPols:LP,badPols:LP)
      ++ \axiom{bivariatePolynomials(lp)} returns \axiom{bps,nbps} where 
      ++ \axiom{bps} is a list of the bivariate polynomials,
      ++ and \axiom{nbps} are the other ones.

    removeRoughlyRedundantFactorsInPols : (LP, LP) -> LP
      ++ \axiom{removeRoughlyRedundantFactorsInPols(lp,lf)} returns 
      ++ \axiom{newlp}where \axiom{newlp} is obtained from \axiom{lp} 
      ++ by removing in every polynomial \axiom{p} of \axiom{lp} 
      ++ any occurence of a polynomial \axiom{f} in \axiom{lf}.
      ++ This may involve a lot of exact-quotients computations.

    removeRoughlyRedundantFactorsInPols : (LP, LP,B) -> LP
      ++ \axiom{removeRoughlyRedundantFactorsInPols(lp,lf,opt)} returns 
      ++ the same as \axiom{removeRoughlyRedundantFactorsInPols(lp,lf)}
      ++ if \axiom{opt} is \axiom{false} and if the previous operation
      ++ does not return any non null and constant polynomial, 
      ++ else return \axiom{[1]}.

    removeRoughlyRedundantFactorsInPol : (P,LP) -> P
      ++ \axiom{removeRoughlyRedundantFactorsInPol(p,lf)} returns the same as
      ++ removeRoughlyRedundantFactorsInPols([p],lf,true)

    interReduce : LP -> LP
      ++ \axiom{interReduce(lp)} returns \axiom{lq} such that \axiom{lp} 
      ++ and \axiom{lq} generate the same ideal and no polynomial
      ++ in \axiom{lq} is reducuble by the others in the sense 
      ++ of Groebner bases. Since no assumptions are required
      ++ the result may depend on the ordering the reductions are
      ++ performed.

    roughBasicSet : LP -> Union(Record(bas:T,top:LP),"failed")
      ++ \axiom{roughBasicSet(lp)} returns the smallest (with Ritt-Wu
      ++ ordering) triangular set contained in \axiom{lp}.

    crushedSet : LP -> LP
      ++ \axiom{crushedSet(lp)} returns \axiom{lq} such that \axiom{lp} and
      ++ and \axiom{lq} generate the same ideal and no rough basic
      ++ sets reduce (in the sense of Groebner bases) the other
      ++ polynomials in \axiom{lq}.

    rewriteSetByReducingWithParticularGenerators : (LP,(P->B),((P,P)->B),((P,P)->P)) -> LP
      ++ \axiom{rewriteSetByReducingWithParticularGenerators(lp,pred?,redOp?,redOp)}
      ++ returns \axiom{lq} where \axiom{lq} is computed by the following
      ++ algorithm. Chose a basic set w.r.t. the reduction-test \axiom{redOp?}
      ++ among the polynomials satisfying property \axiom{pred?},
      ++ if it is empty then leave, else reduce the other polynomials by
      ++ this basic set w.r.t. the reduction-operation \axiom{redOp}.
      ++ Repeat while another basic set with smaller rank can be computed.
      ++ See code. If \axiom{pred?} is \axiom{quasiMonic?} the ideal is unchanged.

    rewriteIdealWithQuasiMonicGenerators : (LP,((P,P)->B),((P,P)->P)) -> LP
      ++ \axiom{rewriteIdealWithQuasiMonicGenerators(lp,redOp?,redOp)} returns
      ++ \axiom{lq} where \axiom{lq} and \axiom{lp} generate 
      ++ the same ideal in \axiom{R^(-1) P} and \axiom{lq}
      ++ has rank not higher than the one of \axiom{lp}.
      ++ Moreover, \axiom{lq} is computed by reducing \axiom{lp}
      ++ w.r.t. some basic set of the ideal generated by
      ++ the quasi-monic polynomials in \axiom{lp}.

    if R has GcdDomain then 

       squareFreeFactors : P -> LP
         ++ \axiom{squareFreeFactors(p)} returns the square-free factors of \axiom{p}
         ++ over \axiom{R}

       univariatePolynomialsGcds : LP -> LP
         ++ \axiom{univariatePolynomialsGcds(lp)} returns \axiom{lg} where
         ++ \axiom{lg} is a list of the gcds of every pair in \axiom{lp}
         ++ of univariate polynomials in the same main variable.

       univariatePolynomialsGcds : (LP,B) -> LP
         ++ \axiom{univariatePolynomialsGcds(lp,opt)} returns the same as
         ++ \axiom{univariatePolynomialsGcds(lp)} if \axiom{opt} is 
         ++ \axiom{false} and if the previous operation does not return 
         ++ any non null and constant polynomial, else return \axiom{[1]}.

       removeRoughlyRedundantFactorsInContents : (LP, LP) -> LP
         ++ \axiom{removeRoughlyRedundantFactorsInContents(lp,lf)} returns 
         ++ \axiom{newlp}where \axiom{newlp} is obtained from \axiom{lp} 
         ++ by removing in the content of every polynomial of \axiom{lp} 
         ++ any occurence of a polynomial \axiom{f} in \axiom{lf}. Moreover,
         ++ squares over \axiom{R} are first removed in the content 
         ++ of every polynomial of \axiom{lp}.

       removeRedundantFactorsInContents : (LP, LP) -> LP
         ++ \axiom{removeRedundantFactorsInContents(lp,lf)} returns \axiom{newlp}
         ++ where \axiom{newlp} is obtained from \axiom{lp} by removing
         ++ in the content of every polynomial of \axiom{lp} any non trivial 
         ++ factor of any polynomial \axiom{f} in \axiom{lf}. Moreover,
         ++ squares over \axiom{R} are first removed in the content 
         ++ of every polynomial of \axiom{lp}.

       removeRedundantFactorsInPols : (LP, LP) -> LP
         ++ \axiom{removeRedundantFactorsInPols(lp,lf)} returns \axiom{newlp}
         ++ where \axiom{newlp} is obtained from \axiom{lp} by removing
         ++ in every polynomial \axiom{p} of \axiom{lp} any non trivial 
         ++ factor of any polynomial \axiom{f} in \axiom{lf}. Moreover,
         ++ squares over \axiom{R} are first removed in every 
         ++ polynomial \axiom{lp}.

    if (R has EuclideanDomain) and (R has CharacteristicZero) then

       irreducibleFactors : LP -> LP
         ++ \axiom{irreducibleFactors(lp)} returns \axiom{lf} such that if
         ++ \axiom{lp = [p1,...,pn]} and \axiom{lf = [f1,...,fm]} then 
         ++ \axiom{p1*p2*...*pn=0} means \axiom{f1*f2*...*fm=0}, and the \axiom{fi}
         ++ are irreducible over \axiom{R} and are pairwise distinct.

       lazyIrreducibleFactors : LP -> LP
         ++ \axiom{lazyIrreducibleFactors(lp)} returns \axiom{lf} such that if
         ++ \axiom{lp = [p1,...,pn]} and \axiom{lf = [f1,...,fm]} then 
         ++ \axiom{p1*p2*...*pn=0} means \axiom{f1*f2*...*fm=0}, and the \axiom{fi}
         ++ are irreducible over \axiom{R} and are pairwise distinct.
         ++ The algorithm tries to avoid factorization into irreducible
         ++ factors as far as possible and makes previously use of gcd
         ++ techniques over \axiom{R}.

       removeIrreducibleRedundantFactors : (LP, LP) -> LP
         ++ \axiom{removeIrreducibleRedundantFactors(lp,lq)} returns the same
         ++ as \axiom{irreducibleFactors(concat(lp,lq))} assuming
         ++ that \axiom{irreducibleFactors(lp)} returns \axiom{lp}
         ++ up to replacing some polynomial \axiom{pj} in \axiom{lp}
         ++ by some polynomial \axiom{qj} associated to \axiom{pj}.
       
  CODE ==> add

     autoRemainder: T -> List(P)

     removeAssociates (lp:LP):LP ==
       removeDuplicates [primPartElseUnitCanonical(p) for p in lp]

     selectPolynomials  (pred?,ps) ==
       gps : LP := []
       bps : LP := []
       while not empty? ps repeat
         p := first ps
         ps := rest ps  
         if pred?(p)
           then
             gps := cons(p,gps)
           else
             bps := cons(p,bps)
       gps := sort(infRittWu?,gps)
       bps := sort(infRittWu?,bps)
       [gps,bps]

     selectOrPolynomials (lpred?,ps) ==   
       gps : LP := []
       bps : LP := []
       while not empty? ps repeat
         p := first ps
         ps := rest ps
         clpred? :=  lpred?
         while (not empty? clpred?) and (not (first clpred?)(p)) repeat
           clpred? :=  rest clpred?
         if not empty?(clpred?)
           then
             gps := cons(p,gps)
           else
             bps := cons(p,bps)
       gps := sort(infRittWu?,gps)
       bps := sort(infRittWu?,bps)
       [gps,bps]

     selectAndPolynomials (lpred?,ps) ==   
       gps : LP := []
       bps : LP := []
       while not empty? ps repeat
         p := first ps
         ps := rest ps
         clpred? :=  lpred?
         while (not empty? clpred?) and ((first clpred?)(p)) repeat
           clpred? :=  rest clpred?
         if empty?(clpred?)
           then
             gps := cons(p,gps)
           else
             bps := cons(p,bps)
       gps := sort(infRittWu?,gps)
       bps := sort(infRittWu?,bps)
       [gps,bps]

     linear? p ==
       ground? p => false
       (mdeg(p) = 1)

     linearPolynomials  ps ==
       selectPolynomials(linear?,ps)

     univariate? p ==
       ground? p => false
       not(ground?(init(p))) => false
       tp := tail(p)
       ground?(tp) => true
       not (mvar(p) = mvar(tp)) => false
       univariate?(tp)

     univariatePolynomials ps ==
       selectPolynomials(univariate?,ps)

     bivariate? p ==
       ground? p => false
       ground? tail(p) => univariate?(init(p))
       vp := mvar(p)
       vtp := mvar(tail(p))
       ((ground? init(p)) and (vp = vtp)) => bivariate? tail(p)
       ((ground? init(p)) and (vp > vtp)) => univariate? tail(p)
       not univariate?(init(p)) => false
       vip := mvar(init(p))
       vip > vtp => false
       vip = vtp => univariate? tail(p)
       vtp < vp => false
       zero? degree(tail(p),vip) => univariate? tail(p)
       bivariate? tail(p)

     bivariatePolynomials ps ==
       selectPolynomials(bivariate?,ps)

     quasiMonicPolynomials ps ==
       selectPolynomials(quasiMonic?,ps)

     removeRoughlyRedundantFactorsInPols (lp,lf,opt) ==
       empty? lp => lp
       newlp : LP := []
       stop : B := false
       lp := remove(zero?,lp)
       lf := sort(infRittWu?,lf)
       test : Union(P,"failed")
       while (not empty? lp) and (not stop) repeat
         p := first lp
         lp := rest lp
         copylf := lf
         while (not empty? copylf) and (not ground? p) _
                and (not (mvar(p) < mvar(first copylf))) repeat
           f := first copylf
           copylf := rest copylf
           while (((test := p exquo$P f)) case P) repeat
             p := test::P
         stop := opt and ground?(p)
         newlp := cons(unitCanonical(p),newlp)
       stop => [1$P]
       newlp 

     removeRoughlyRedundantFactorsInPol(p,lf) ==
       zero? p => p
       lp : LP := [p]
       first removeRoughlyRedundantFactorsInPols (lp,lf,true()$B)

     removeRoughlyRedundantFactorsInPols (lp,lf) ==
       removeRoughlyRedundantFactorsInPols (lp,lf,false()$B)

     possiblyNewVariety?(newlp,llp) ==       
       while (not empty? llp) and _
        (not certainlySubVariety?(newlp,first(llp))) repeat
         llp := rest llp
       empty? llp

     certainlySubVariety?(lp,lq) ==
       gs := construct(lp)$GPS
       while (not empty? lq) and _
        (zero? (remainder(first(lq),gs)$GPS).polnum) repeat
         lq := rest lq    
       empty? lq

     probablyZeroDim?(lp: List P) : Boolean ==
       m := #lp
       lv : List V := variables(first lp)
       while not empty? (lp := rest lp) repeat
         lv := concat(variables(first lp),lv)
       n := #(removeDuplicates lv)
       not (n > m)

     interReduce(lp: LP): LP ==
       ps := lp
       rs: List(P) := []
       repeat
         empty? ps => return rs
         ps := sort(supRittWu?, ps)
         p := first ps
         ps := rest ps
         r := remainder(p,[ps]$GPS).polnum
         zero? r => "leave"
         ground? r => return []
         associates?(r,p) => rs := cons(r,rs)
         ps := concat(ps,cons(r,rs))
         rs := []

     roughRed?(p:P,q:P):B == 
       ground? p => false
       ground? q => true
       mvar(p) > mvar(q)

     roughBasicSet(lp) == basicSet(lp,roughRed?)$T

     autoRemainder(ts:T): List(P) ==
       empty? ts => members(ts)
       lp := sort(infRittWu?, reverse members(ts))
       newlp : List(P) := [primPartElseUnitCanonical first(lp)]
       lp := rest(lp)
       while not empty? lp repeat
         p := (remainder(first(lp),construct(newlp)$GPS)$GPS).polnum
         if not zero? p
           then
             if ground? p
               then
                 newlp := [1$P]
                 lp := []
               else
                 newlp := cons(p,newlp)
                 lp := rest(lp)
           else
             lp := rest(lp)
       newlp

     crushedSet(lp) ==
       rec := roughBasicSet(lp)
       contradiction := (rec case "failed")@B
       finished : B := false       
       while (not finished) and (not contradiction) repeat 
         bs := (rec::RBT).bas        
         rs := (rec::RBT).top
         rs :=  rewriteIdealWithRemainder(rs,bs)$T
         contradiction := ((not empty? rs) and (first(rs) = 1))
         if not contradiction
           then
             rs := concat(rs,autoRemainder(bs))
             rec := roughBasicSet(rs)
             contradiction := (rec case "failed")@B
             not contradiction => finished := not infRittWu?((rec::RBT).bas,bs)
       contradiction => [1$P]
       rs

     rewriteSetByReducingWithParticularGenerators (ps,pred?,redOp?,redOp) ==
       rs : LP := remove(zero?,ps)
       any?(ground?,rs) => [1$P]
       contradiction : B := false
       bs1 : T := empty()$T
       rec : Union(RBT,"failed")
       ar : Union(T,List(P))
       stop : B := false
       while (not contradiction) and (not stop) repeat
         rec := basicSet(rs,pred?,redOp?)$T
         bs2 : T := (rec::RBT).bas
         rs := (rec::RBT).top
         -- ar := autoReduce(bs2,lazyPrem,reduced?)@Union(T,List(P))
         ar := bs2::Union(T,List(P))
         if (ar case T)@B
           then
             bs2 := ar::T
             if infRittWu?(bs2,bs1)
               then
                 rs := rewriteSetWithReduction(rs,bs2,redOp,redOp?)$T
                 bs1 := bs2
               else
                 stop := true
             rs := concat(members(bs2),rs)
           else
             rs := concat(ar::LP,rs)
         if any?(ground?,rs)
           then
             contradiction := true
             rs := [1$P]
       rs        

     removeRedundantFactors (lp:LP,lq :LP, remOp : (LP -> LP)) ==
       -- ASSUME remOp(lp) returns lp up to similarity 
       lq := removeRoughlyRedundantFactorsInPols(lq,lp,false)
       lq := remOp lq
       sort(infRittWu?,concat(lp,lq))

     removeRedundantFactors (lp:LP,lq :LP) ==
       lq := removeRoughlyRedundantFactorsInPols(lq,lp,false)
       lq := removeRedundantFactors lq
       sort(infRittWu?,concat(lp,lq))

     if (R has EuclideanDomain) and (R has CharacteristicZero) then

       irreducibleFactors lp ==
         newlp : LP := []
         lrrz : List RRZ
         rrz : RRZ
         fp : FP
         while not empty? lp repeat
           p := first lp
           lp := rest lp
           fp := factor(p)$pf
           lrrz := factors(fp)$FP
           lf := remove(ground?,[rrz.factor for rrz in lrrz])
           newlp := concat(lf,newlp)
         removeDuplicates newlp

       lazyIrreducibleFactors lp ==
         lp := removeRedundantFactors(lp)
         newlp : LP := []
         lrrz : List RRZ
         rrz : RRZ
         fp : FP
         while not empty? lp repeat
           p := first lp
           lp := rest lp
           fp := factor(p)$pf
           lrrz := factors(fp)$FP
           lf := remove(ground?,[rrz.factor for rrz in lrrz])
           newlp := concat(lf,newlp)
         newlp

       removeIrreducibleRedundantFactors (lp:LP,lq :LP) ==
         -- ASSUME lp only contains irreducible factors over R
         lq := removeRoughlyRedundantFactorsInPols(lq,lp,false)
         lq := irreducibleFactors lq
         sort(infRittWu?,concat(lp,lq))

     if R has GcdDomain then

       squareFreeFactors(p:P) ==
         sfp: Factored P := squareFree(p)$P
         lsf: List P := [foo.factor for foo in factors(sfp)]
         lsf

       univariatePolynomialsGcds (ps,opt) ==
         lg : LP := []
         pInV : LP 
         stop : B := false
         ps := sort(infRittWu?,ps)
         p,g : P
         v : V
         while (not empty? ps) and (not stop) repeat
           while (not empty? ps) and (not univariate?((p := first(ps)))) repeat
             ps := rest ps
           if not empty? ps
             then
               v := mvar(p)$P
               pInV := [p]
               while (not empty? ps) and (mvar((p := first(ps))) = v) repeat
                 if (univariate?(p))
                   then
                     pInV := cons(p,pInV)
                 ps := rest ps
               g := gcd(pInV)$P
               stop := opt and (ground? g)
               lg := cons(g,lg)
         stop => [1$P]
         lg

       univariatePolynomialsGcds ps ==
         univariatePolynomialsGcds (ps,false)
         
       removeSquaresIfCan lp ==
         empty? lp => lp
         removeDuplicates [squareFreePart(p)$P for p in lp]

       rewriteIdealWithQuasiMonicGenerators (ps,redOp?,redOp) ==
         ups := removeSquaresIfCan(univariatePolynomialsGcds(ps,true))
         ps := removeDuplicates concat(ups,ps)
         rewriteSetByReducingWithParticularGenerators_
             (ps,quasiMonic?,redOp?,redOp)

       removeRoughlyRedundantFactorsInContents (ps,lf) ==
         empty? ps => ps
         newps : LP := []
         p,newp,cp,newcp,f,g : P
         test : Union(P,"failed")
         copylf : LP
         while not empty? ps repeat
           p := first ps 
           ps := rest ps
           cp := mainContent(p)$P
           newcp := squareFreePart(cp)$P
           newp := (p exquo$P cp)::P
           if not ground? newcp
             then
               copylf := [f for f in lf | mvar(f) <= mvar(newcp)]
               while (not empty? copylf) and (not ground? newcp) repeat
                 f := first copylf
                 copylf := rest copylf
                 test := (newcp exquo$P f)
                 if (test case P)@B
                   then
                     newcp := test::P
           if ground? newcp
             then
               newp := unitCanonical(newp)
             else
               newp := unitCanonical(newp * newcp)
           newps := cons(newp,newps)
         newps

       removeRedundantFactorsInContents (ps,lf) ==
         empty? ps => ps
         newps : LP := []
         p,newp,cp,newcp,f,g : P
         while not empty? ps repeat
           p := first ps 
           ps := rest ps
           cp := mainContent(p)$P
           newcp := squareFreePart(cp)$P
           newp := (p exquo$P cp)::P
           if not ground? newcp
             then
               copylf := lf
               while (not empty? copylf) and (not ground? newcp) repeat
                 f := first copylf
                 copylf := rest copylf
                 g := gcd(newcp,f)$P
                 if not ground? g
                   then
                     newcp := (newcp exquo$P g)::P
           if ground? newcp
             then
               newp := unitCanonical(newp)
             else
               newp := unitCanonical(newp * newcp)
           newps := cons(newp,newps)
         newps

       removeRedundantFactorsInPols (ps,lf) ==
         empty? ps => ps
         newps : LP := []
         p,newp,cp,newcp,f,g : P
         while not empty? ps repeat
           p := first ps 
           ps := rest ps
           cp := mainContent(p)$P
           newcp := squareFreePart(cp)$P
           newp := (p exquo$P cp)::P
           newp := squareFreePart(newp)$P
           copylf := lf
           while not empty? copylf repeat
             f := first copylf
             copylf := rest copylf
             if not ground? newcp
               then
                 g := gcd(newcp,f)$P
                 if not ground? g
                   then
                     newcp := (newcp exquo$P g)::P
             if not ground? newp
               then
                 g := gcd(newp,f)$P
                 if not ground? g
                   then
                     newp := (newp exquo$P g)::P
           if ground? newcp
             then
               newp := unitCanonical(newp)
             else
               newp := unitCanonical(newp * newcp)
           newps := cons(newp,newps)
         newps

       removeRedundantFactors (a:P,b:P) : LP ==
         a := primPartElseUnitCanonical(squareFreePart(a))
         b := primPartElseUnitCanonical(squareFreePart(b))
         if not infRittWu?(a,b)
           then
            (a,b) := (b,a)
         if ground? a
           then
             if ground? b
               then
                 return([])
               else
                 return([b])
           else
             if ground? b
               then
                 return([a])
               else
                 return(unprotectedRemoveRedundantFactors(a,b))

       unprotectedRemoveRedundantFactors (a,b) ==
         c := b exquo$P a
         if (c case P)@B
           then
             d : P := c::P
             if ground? d
               then
                 return([a])
               else
                 return([a,d])
           else
             g : P := gcd(a,b)$P
             if ground? g
               then
                 return([a,b])
               else
                 return([g,(a exquo$P g)::P,(b exquo$P g)::P])

     else

       removeSquaresIfCan lp ==
         lp

       rewriteIdealWithQuasiMonicGenerators (ps,redOp?,redOp) ==
         rewriteSetByReducingWithParticularGenerators_
           (ps,quasiMonic?,redOp?,redOp)

       removeRedundantFactors (a:P,b:P) ==
         a := primPartElseUnitCanonical(a)
         b := primPartElseUnitCanonical(b)
         if not infRittWu?(a,b)
           then
            (a,b) := (b,a)
         if ground? a
           then
             if ground? b
               then
                 return([])
               else
                 return([b])
           else
             if ground? b
               then
                 return([a])
               else
                 return(unprotectedRemoveRedundantFactors(a,b))
        
       unprotectedRemoveRedundantFactors (a,b) ==
         c := b exquo$P a
         if (c case P)@B
           then
             d : P := c::P
             if ground? d
               then
                 return([a])
               else
                 if infRittWu?(d,a) then (a,d) := (d,a)
                 return(unprotectedRemoveRedundantFactors(a,d))
            else
              return([a,b])

     removeRedundantFactors (lp:LP) ==
       lp := remove(ground?, lp)
       lp := removeDuplicates [primPartElseUnitCanonical(p) for p in lp]
       lp := removeSquaresIfCan lp
       lp := removeDuplicates [unitCanonical(p) for p in lp]
       empty? lp => lp
       size?(lp,1$N)$(List P) => lp
       lp := sort(infRittWu?,lp)
       p : P := first lp
       lp := rest lp
       base : LP := unprotectedRemoveRedundantFactors(p,first lp)
       top : LP := rest lp
       while not empty? top repeat
         p := first top
         base := removeRedundantFactors(base,p)
         top := rest top
       base

     removeRedundantFactors (lp:LP,a:P) ==
       lp := remove(ground?, lp)
       lp := sort(infRittWu?, lp)
       ground? a => lp
       empty? lp => [a]
       toSee : LP := lp
       toSave : LP := []
       while not empty? toSee repeat
         b := first toSee
         toSee := rest toSee
         if not infRittWu?(b,a) 
           then
             (c,d) := (a,b)
           else
             (c,d) := (b,a)
         rrf := unprotectedRemoveRedundantFactors(c,d)
         empty? rrf =>
           error"in removeRedundantFactors : (LP,P) -> LP from PSETPK"
         c := first rrf
         rrf := rest rrf
         if empty? rrf
           then
             if associates?(c,b)
               then
                 toSave := concat(toSave,toSee)
                 a := b
                 toSee := []
               else
                 a := c
                 toSee := concat(toSave,toSee)
                 toSave := []
           else
             d := first rrf
             rrf := rest rrf
             if empty? rrf
               then
                 if associates?(c,b)
                   then
                     toSave := concat(toSave,[b])
                     a := d
                   else
                     if associates?(d,b)
                       then
                         toSave := concat(toSave,[b])
                         a := c
                       else
                         toSave := removeRedundantFactors(toSave,c)
                         a := d
               else
                 e := first rrf
                 not empty? rest(rrf) => 
                   error"in removeRedundantFactors:(LP,P)->LP from PSETPK"
                 -- ASSUME that neither c, nor d, nor e may be associated to b
                 toSave := removeRedundantFactors(toSave,c)
                 toSave := removeRedundantFactors(toSave,d)
                 a := e
         if empty? toSee
           then
             toSave := sort(infRittWu?,cons(a,toSave))
       toSave