This file is indexed.

/usr/share/axiom-20170501/src/algebra/PSQFR.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
)abbrev package PSQFR PolynomialSquareFree
++ Date Last Updated: November 1993, (P.Gianni)
++ Description:
++ This package computes square-free decomposition of multivariate
++ polynomials over a coefficient ring which is an arbitrary gcd domain.
++ The requirement on the coefficient domain guarantees that the 
++ \spadfun{content} can be
++ removed so that factors will be primitive as well as square-free.
++ Over an infinite ring of finite characteristic,it may not be possible to
++ guarantee that the factors are square-free.

PolynomialSquareFree(VarSet,E,RC,P) : SIG == CODE where
  VarSet : OrderedSet
  E : OrderedAbelianMonoidSup
  RC : GcdDomain
  P : PolynomialCategory(RC,E,VarSet)

  SIG ==> with

    squareFree : P -> Factored P
      ++ squareFree(p) returns the square-free factorization of the
      ++ polynomial p.  Each factor has no repeated roots, and the
      ++ factors are pairwise relatively prime.

  CODE ==> add

    SUP    ==> SparseUnivariatePolynomial(P)
    NNI    ==> NonNegativeInteger
    fUnion ==> Union("nil", "sqfr", "irred", "prime")
    FF     ==> Record(flg:fUnion, fctr:P, xpnt:Integer)

    finSqFr : (P,List VarSet) -> Factored P
    pthPower : P -> Factored P
    pPolRoot : P -> P
    putPth   : P -> P

    chrc:=characteristic$RC

    if RC has CharacteristicNonZero then
    -- find the p-th root of a polynomial
      pPolRoot(f:P) : P ==
        lvar:=variables f
        empty? lvar => f
        mv:=first lvar
        uf:=univariate(f,mv)
        uf:=divideExponents(uf,chrc)::SUP
        uf:=map(pPolRoot,uf)
        multivariate(uf,mv)

    -- substitute variables with their p-th power
      putPth(f:P) : P ==
        lvar:=variables f
        empty? lvar => f
        mv:=first lvar
        uf:=univariate(f,mv)
        uf:=multiplyExponents(uf,chrc)::SUP
        uf:=map(putPth,uf)
        multivariate(uf,mv)

    -- the polynomial is a perfect power
      pthPower(f:P) : Factored P ==
        proot : P := 0
        isSq  : Boolean := false
        if (g:=charthRoot f) case "failed" then proot:=pPolRoot(f)
        else
          proot := g :: P
          isSq  := true
        psqfr:=finSqFr(proot,variables f)
        isSq  =>
          makeFR((unit psqfr)**chrc,[[u.flg,u.fctr,
           (u.xpnt)*chrc] for u in factorList psqfr])
        makeFR((unit psqfr),[["nil",putPth u.fctr,u.xpnt]
                             for u in factorList psqfr])

    -- compute the square free decomposition, finite characteristic case
      finSqFr(f:P,lvar:List VarSet) : Factored P ==
         empty? lvar => pthPower(f)
         mv:=first lvar
         lvar:=lvar.rest
         differentiate(f,mv)=0 => finSqFr(f,lvar)
         uf:=univariate(f,mv)
         cont := content uf
         cont1:P:=1
         uf := (uf exquo cont)::SUP
         squf := squareFree(uf)$UnivariatePolynomialSquareFree(P,SUP)
         pfaclist:List FF :=[]
         for u in factorList squf repeat
           uexp:NNI:=(u.xpnt):NNI
           u.flg = "sqfr" =>  -- the square free factor is OK
             pfaclist:= cons([u.flg,multivariate(u.fctr,mv),uexp],
                              pfaclist)
           --listfin1:= finSqFr(multivariate(u.fctr,mv),lvar)
           listfin1:= squareFree multivariate(u.fctr,mv)
           flistfin1:=[[uu.flg,uu.fctr,uu.xpnt*uexp]
                        for uu in factorList listfin1]
           cont1:=cont1*((unit listfin1)**uexp)
           pfaclist:=append(flistfin1,pfaclist)
         cont:=cont*cont1
         cont ^= 1 =>
           sqp := squareFree cont
           pfaclist:= append (factorList sqp,pfaclist)
           makeFR(unit(sqp)*coefficient(unit squf,0),pfaclist)
         makeFR(coefficient(unit squf,0),pfaclist)

    squareFree(p:P) ==
       mv:=mainVariable p
       mv case "failed" => makeFR(p,[])$Factored(P)
       characteristic$RC ^=0 => finSqFr(p,variables p)
       up:=univariate(p,mv)
       cont := content up
       up := (up exquo cont)::SUP
       squp := squareFree(up)$UnivariatePolynomialSquareFree(P,SUP)
       pfaclist:List FF :=
         [[u.flg,multivariate(u.fctr,mv),u.xpnt]
                                            for u in factorList squp]
       cont ^= 1 =>
         sqp := squareFree cont
         makeFR(unit(sqp)*coefficient(unit squp,0),
              append(factorList sqp, pfaclist))
       makeFR(coefficient(unit squp,0),pfaclist)