This file is indexed.

/usr/share/axiom-20170501/src/algebra/QALGSET.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
)abbrev domain QALGSET QuasiAlgebraicSet
++ Author:  William Sit
++ Date Created: March 13, 1992
++ Date Last Updated: June 12, 1992 
++ References:William Sit, "An Algorithm for Parametric Linear Systems"
++            J. Sym. Comp., April, 1992
++ Description:
++ \spadtype{QuasiAlgebraicSet} constructs a domain representing
++ quasi-algebraic sets, which is the intersection of a Zariski
++ closed set, defined as the common zeros of a given list of
++ polynomials (the defining polynomials for equations), and a principal
++ Zariski open set, defined as the complement of the common
++ zeros of a polynomial f (the defining polynomial for the inequation).
++ This domain provides simplification of a user-given representation
++ using groebner basis computations.
++ There are two simplification routines: the first function
++ \spadfun{idealSimplify}  uses groebner
++ basis of ideals alone, while the second, \spadfun{simplify} uses both
++ groebner basis and factorization.  The resulting defining equations L
++ always form a groebner basis, and the resulting defining
++ inequation f is always reduced.  The function \spadfun{simplify} may
++ be applied several times if desired.   A third simplification
++ routine \spadfun{radicalSimplify} is provided in
++ \spadtype{QuasiAlgebraicSet2}  for comparison study only,
++ as it is inefficient compared to the other two, as well as is
++ restricted to only certain coefficient domains.  For detail analysis
++ and a comparison of the three methods, please consult the reference
++ cited.
++
++ A polynomial function q defined on the quasi-algebraic set
++ is equivalent to its reduced form with respect to L.  While
++ this may be obtained using the usual normal form
++ algorithm, there is no canonical form for q.
++
++ The ordering in groebner basis computation is determined by
++ the data type of the input polynomials.  If it is possible
++ we suggest to use refinements of total degree orderings.

QuasiAlgebraicSet(R, Var,Expon,Dpoly) : SIG == CODE where
  R : GcdDomain
  Var : OrderedSet
  Expon : OrderedAbelianMonoidSup
  Dpoly : PolynomialCategory(R,Expon,Var)

  NNI      ==> NonNegativeInteger
  newExpon ==> Product(NNI,Expon)
  newPoly  ==> PolynomialRing(R,newExpon)
  Ex       ==> OutputForm
  mrf      ==> MultivariateFactorize(Var,Expon,R,Dpoly)
  Status   ==> Union(Boolean,"failed") -- empty or not, or don't know
 
  SIG ==> Join(SetCategory, CoercibleTo OutputForm) with
     --- should be Object instead of SetCategory, bug in LIST Object ---
     --- equality is not implemented ---

     empty : () -> $
       ++ empty() returns the empty quasi-algebraic set

     quasiAlgebraicSet : (List Dpoly, Dpoly) -> $
       ++ quasiAlgebraicSet(pl,q) returns the quasi-algebraic set
       ++ with defining equations p = 0 for p belonging to the list pl, and
       ++ defining inequation q ^= 0.

     status : $ -> Status
       ++ status(s) returns true if the quasi-algebraic set is empty,
       ++ false if it is not, and "failed" if not yet known

     setStatus : ($, Status) -> $
       ++ setStatus(s,t) returns the same representation for s, but
       ++ asserts the following: if t is true, then s is empty,
       ++ if t is false, then s is non-empty, and if t = "failed",
       ++ then no assertion is made (that is, "don't know").
       ++ Note: for internal use only, with care.

     empty? : $ -> Boolean
       ++ empty?(s) returns
       ++ true if the quasialgebraic set s has no points,
       ++ and false otherwise.

     definingEquations : $ -> List Dpoly
       ++ definingEquations(s) returns a list of defining polynomials
       ++ for equations, that is, for the Zariski closed part of s.

     definingInequation : $ -> Dpoly
       ++ definingInequation(s) returns a single defining polynomial for the
       ++ inequation, that is, the Zariski open part of s.

     idealSimplify : $ -> $
       ++ idealSimplify(s) returns a different and presumably simpler
       ++ representation of s with the defining polynomials for the
       ++ equations
       ++ forming a groebner basis, and the defining polynomial for the
       ++ inequation reduced with respect to the basis, using Buchberger's
       ++ algorithm.

     if (R has EuclideanDomain) and (R has CharacteristicZero) then

       simplify : $ -> $
         ++ simplify(s) returns a different and presumably simpler
         ++ representation of s with the defining polynomials for the
         ++ equations
         ++ forming a groebner basis, and the defining polynomial for the
         ++ inequation reduced with respect to the basis, using a heuristic
         ++ algorithm based on factoring.

  CODE ==> add

     Rep := Record(status:Status,zero:List Dpoly, nzero:Dpoly)
     x:$
 
     import GroebnerPackage(R,Expon,Var,Dpoly)
     import GroebnerPackage(R,newExpon,Var,newPoly)
     import GroebnerInternalPackage(R,Expon,Var,Dpoly)
 
                       ----  Local Functions  ----
 
     minset   : List List Dpoly -> List List Dpoly
     overset? : (List Dpoly, List List Dpoly) -> Boolean
     npoly    : Dpoly            ->  newPoly
     oldpoly  : newPoly          ->  Union(Dpoly,"failed")
 
 
     if (R has EuclideanDomain) and (R has CharacteristicZero) then
       factorset (y:Dpoly):List Dpoly ==
         ground? y => []
         [j.factor for j in factors factor$mrf  y]
 
       simplify x ==
         if x.status case "failed" then
           x:=quasiAlgebraicSet(zro:=groebner x.zero, redPol(x.nzero,zro))
         (pnzero:=x.nzero)=0 => empty()
         nzro:=factorset pnzero
         mset:=minset [factorset p for p in x.zero]
         mset:=[setDifference(s,nzro) for s in mset]
         zro:=groebner [*/s for s in mset]
         member? (1$Dpoly, zro) => empty()
         [x.status, zro, primitivePart redPol( */nzro, zro)]
 
     npoly(f:Dpoly) : newPoly ==
       zero? f => 0
       monomial(leadingCoefficient f,makeprod(0,degree f))$newPoly +
             npoly(reductum f)
 
     oldpoly(q:newPoly) : Union(Dpoly,"failed") ==
       q=0$newPoly => 0$Dpoly
       dq:newExpon:=degree q
       n:NNI:=selectfirst (dq)
       n^=0 => "failed"
       ((g:=oldpoly reductum q) case "failed") => "failed"
       monomial(leadingCoefficient q,selectsecond dq)$Dpoly + (g::Dpoly)
 
     coerce x ==
       x.status = true => "Empty"::Ex
       bracket [[hconcat(f::Ex, " = 0"::Ex) for f in x.zero ]::Ex,
                 hconcat( x.nzero::Ex, " != 0"::Ex)]
 
     empty? x ==
       if x.status case "failed" then x:=idealSimplify x
       x.status :: Boolean
 
     empty() == [true::Status, [1$Dpoly], 0$Dpoly]

     status x == x.status

     setStatus(x,t) == [t,x.zero,x.nzero]

     definingEquations x == x.zero

     definingInequation x == x.nzero

     quasiAlgebraicSet(z0,n0) == ["failed", z0, n0]
 
     idealSimplify x ==
       x.status case Boolean => x
       z0:= x.zero
       n0:= x.nzero
       empty? z0 => [false, z0, n0]
       member? (1$Dpoly, z0) => empty()
       tp:newPoly:=(monomial(1,makeprod(1,0$Expon))$newPoly * npoly n0)-1
       ngb:=groebner concat(tp, [npoly g for g in z0])
       member? (1$newPoly, ngb) => empty()
       gb:List Dpoly:=nil
       while not empty? ngb repeat
         if ((f:=oldpoly ngb.first) case Dpoly) then gb:=concat(f, gb)
         ngb:=ngb.rest
       [false::Status, gb, primitivePart redPol(n0, gb)]
 
 
     minset lset ==
       empty? lset => lset
       [s for s  in lset | ^(overset?(s,lset))]
 
     overset?(p,qlist) ==
       empty? qlist => false
       or/[(brace$(Set Dpoly) q) <$(Set Dpoly) (brace$(Set Dpoly) p) _
           for q in qlist]