This file is indexed.

/usr/share/axiom-20170501/src/algebra/RADIX.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
)abbrev domain RADIX RadixExpansion
++ Author: Stephen M. Watt
++ Date Created: October 1986
++ Date Last Updated: May 15, 1991
++ Description:
++ This domain allows rational numbers to be presented as repeating
++ decimal expansions or more generally as repeating expansions in any base.

RadixExpansion(bb) : SIG == CODE where
  bb : Integer

  I   ==> Integer
  NNI ==> NonNegativeInteger
  OUT ==> OutputForm
  RN  ==> Fraction Integer
  ST  ==> Stream Integer
  QuoRem ==> Record(quotient: Integer, remainder: Integer)

  SIG ==> QuotientFieldCategory(Integer) with

    coerce : % -> Fraction Integer
      ++ coerce(rx) converts a radix expansion to a rational number.

    fractionPart : % -> Fraction Integer
      ++ fractionPart(rx) returns the fractional part of a radix expansion.

    wholeRagits : % -> List Integer
      ++ wholeRagits(rx) returns the ragits of the integer part
      ++ of a radix expansion.

    fractRagits : % -> Stream Integer
      ++ fractRagits(rx) returns the ragits of the fractional part
      ++ of a radix expansion.

    prefixRagits : % -> List Integer
      ++ prefixRagits(rx) returns the non-cyclic part of the ragits
      ++ of the fractional part of a radix expansion.
      ++ For example, if \spad{x = 3/28 = 0.10 714285 714285 ...},
      ++ then \spad{prefixRagits(x)=[1,0]}.

    cycleRagits : % -> List Integer
      ++ cycleRagits(rx) returns the cyclic part of the ragits of the
      ++ fractional part of a radix expansion.
      ++ For example, if \spad{x = 3/28 = 0.10 714285 714285 ...},
      ++ then \spad{cycleRagits(x) = [7,1,4,2,8,5]}.

    wholeRadix : List Integer -> %
      ++ wholeRadix(l) creates an integral radix expansion from a list
      ++ of ragits.
      ++ For example, \spad{wholeRadix([1,3,4])} will return \spad{134}.

    fractRadix : (List Integer, List Integer) -> %
      ++ fractRadix(pre,cyc) creates a fractional radix expansion
      ++ from a list of prefix ragits and a list of cyclic ragits.
      ++ for example, \spad{fractRadix([1],[6])} will return 
      ++ \spad{0.16666666...}.

  CODE ==> add

    -- The efficiency of arithmetic operations is poor.
    -- Could use a lazy eval where either rational rep
    -- or list of ragit rep (the current) or both are kept
    -- as demanded.

    bb < 2 => error "Radix base must be at least 2"
    Rep := Record(sgn: Integer,      int: List Integer,
                  pfx: List Integer, cyc: List Integer)

    q:     RN
    qr:    QuoRem
    a,b:   %
    n:     I

    radixInt:    (I, I)    -> List I
    radixFrac:   (I, I, I) -> Record(pfx: List I, cyc: List I)
    checkRagits: List I    -> Boolean

    -- Arithmetic operations
    characteristic() == 0

    differentiate a == 0

    0     == [1, nil(),  nil(), nil()]

    1     == [1, [1], nil(), nil()]

    - a   == (a = 0 => 0; [-a.sgn, a.int, a.pfx, a.cyc])

    a + b == (a::RN + b::RN)::%

    a - b == (a::RN - b::RN)@RN::%

    n * a == (n     * a::RN)::%

    a * b == (a::RN * b::RN)::%

    a / b == (a::RN / b::RN)::%

    (i:I) / (j:I) == (i/j)@RN :: %

    a < b == a::RN < b::RN

    a = b == a.sgn = b.sgn and a.int = b.int and
             a.pfx = b.pfx and a.cyc = b.cyc

    numer a == numer(a::RN)

    denom a == denom(a::RN)

    -- Algebraic coercions

    coerce(a):RN == (wholePart a) :: RN + fractionPart a

    coerce(n):%  == n :: RN :: %

    coerce(q):%  ==
      s := 1; if q < 0 then (s := -1; q := -q)
      qr      := divide(numer q,denom q)
      whole   := radixInt (qr.quotient,bb)
      fractn  := radixFrac(qr.remainder,denom q,bb)
      cycle   := (fractn.cyc = [0] => nil(); fractn.cyc)
      [s,whole,fractn.pfx,cycle]

    retractIfCan(a):Union(RN,"failed") == a::RN
    retractIfCan(a):Union(I,"failed") ==
      empty?(a.pfx) and empty?(a.cyc) => wholePart a
      "failed"

    -- Exported constructor/destructors

    ceiling a == ceiling(a::RN)

    floor a == floor(a::RN)

    wholePart a ==
      n0 := 0
      for r in a.int repeat n0 := bb*n0 + r
      a.sgn*n0

    fractionPart a ==
      n0 := 0
      for r in a.pfx repeat n0 := bb*n0 + r
      null a.cyc =>
          a.sgn*n0/bb**((#a.pfx)::NNI)
      n1 := n0
      for r in a.cyc repeat n1 := bb*n1 + r
      n := n1 - n0
      d := (bb**((#a.cyc)::NNI) - 1) * bb**((#a.pfx)::NNI)
      a.sgn*n/d

    wholeRagits  a == a.int

    fractRagits  a == concat(construct(a.pfx)@ST,repeating a.cyc)

    prefixRagits a == a.pfx

    cycleRagits  a == a.cyc

    wholeRadix li ==
      checkRagits li
      [1, li, nil(), nil()]

    fractRadix(lpfx, lcyc) ==
      checkRagits lpfx; checkRagits lcyc
      [1, nil(), lpfx, lcyc]

    -- Output

    ALPHAS : String := "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

    intToExpr(i:I): OUT ==
      -- computes a digit for bases between 11 and 36
      i < 10 => i :: OUT
      elt(ALPHAS,(i-10) + minIndex(ALPHAS)) :: OUT

    exprgroup(le: List OUT): OUT ==
      empty? le      => error "exprgroup needs non-null list"
      empty? rest le => first le
      abs bb <= 36 => hconcat le
      blankSeparate le

    intgroup(li: List I): OUT ==
      empty? li      => error "intgroup needs non-null list"
      empty? rest li => intToExpr first(li)
      abs bb <= 10 => hconcat [i :: OUT for i in li]
      abs bb <= 36 => hconcat [intToExpr(i) for i in li]
      blankSeparate [i :: OUT for i in li]

    overBar(li: List I): OUT == overbar intgroup li

    coerce(a): OUT ==
      le : List OUT := nil()
      if not null a.cyc then le := concat(overBar  a.cyc,le)
      if not null a.pfx then le := concat(intgroup a.pfx,le)
      if not null le    then le := concat("." :: OUT,le)
      if not null a.int then le := concat(intgroup a.int,le)
      else le := concat(0 :: OUT,le)
      rex := exprgroup le
      if a.sgn < 0 then -rex else rex

    -- Construction utilities
    checkRagits li ==
      for i in li repeat if i < 0 or i >= bb then
        error "Each ragit (digit) must be between 0 and base-1"
      true

    radixInt(n,bas) ==
      rits: List I := nil()
      while abs n ^= 0 repeat
        qr   := divide(n,bas)
        n    := qr.quotient
        rits := concat(qr.remainder,rits)
      rits

    radixFrac(num,den,bas) ==
      -- Rits is the sequence of quotient/remainder pairs
      -- in calculating the radix expansion of the rational number.
      -- We wish to find p and c such that
      --    rits.i are distinct    for 0<=i<=p+c-1
      --    rits.i = rits.(i+p)    for i>p
      -- p is the length of the non-periodic prefix and c is
      -- the length of the cycle.

      -- Compute p and c using Floyd's algorithm.
      -- 1. Find smallest n s.t. rits.n = rits.(2*n)
      qr    := divide(bas * num, den)
      i : I := 0
      qr1i  := qr2i := qr
      rits: List QuoRem := [qr]
      until qr1i = qr2i repeat
        qr1i := divide(bas * qr1i.remainder,den)
        qrt  := divide(bas * qr2i.remainder,den)
        qr2i := divide(bas * qrt.remainder,den)
        rits := concat(qr2i, concat(qrt, rits))
        i    := i + 1
      rits := reverse_! rits
      n    := i
      -- 2. Find p = first i such that rits.i = rits.(i+n)
      ritsi := rits
      ritsn := rits; for i in 1..n repeat ritsn := rest ritsn
      i := 0
      while first(ritsi) ^= first(ritsn) repeat
        ritsi := rest ritsi
        ritsn := rest ritsn
        i     := i + 1
      p := i
      -- 3. Find c = first i such that rits.p = rits.(p+i)
      ritsn := rits; for i in 1..n repeat ritsn := rest ritsn
      rn    := first ritsn
      cfound:= false
      c : I := 0
      for i in 1..p while not cfound repeat
        ritsn := rest ritsn
        if rn = first(ritsn) then
          c := i
          cfound := true
      if not cfound then c := n
      -- 4. Now produce the lists of ragits.
      ritspfx: List I := nil()
      ritscyc: List I := nil()
      for i in 1..p repeat
        ritspfx := concat(first(rits).quotient, ritspfx)
        rits    := rest rits
      for i in 1..c repeat
        ritscyc := concat(first(rits).quotient, ritscyc)
        rits    := rest rits
      [reverse_! ritspfx, reverse_! ritscyc]