This file is indexed.

/usr/share/axiom-20170501/src/algebra/RATFACT.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
)abbrev package RATFACT RationalFactorize
++ Author: P. Gianni
++ Date last updated: December 1993
++ Description:
++ Factorization of extended polynomials with rational coefficients.
++ This package implements factorization of extended polynomials
++ whose coefficients are rational numbers. It does this by taking the
++ lcm of the coefficients of the polynomial and creating a polynomial
++ with integer coefficients. The algorithm in 
++ \spadtype{GaloisGroupFactorizer} is then
++ used to factor the integer polynomial. The result is normalized
++ with respect to the original lcm of the denominators.
 
RationalFactorize(RP) : SIG == CODE where
  RN ==> Fraction Integer
  RP : UnivariatePolynomialCategory RN

  I  ==> Integer
  BP ==> SparseUnivariatePolynomial(I)
 
  SIG ==> with
 
    factor : RP -> Factored RP
      ++ factor(p) factors an extended polynomial p over the rational numbers.

    factorSquareFree : RP -> Factored RP
      ++ factorSquareFree(p) factors an extended squareFree 
      ++ polynomial p over the rational numbers.

  CODE ==> add

     import GaloisGroupFactorizer (BP)
     ParFact   ==> Record(irr:BP,pow:I)
     FinalFact ==> Record(contp:I,factors:List(ParFact))
     URNI      ==> UnivariatePolynomialCategoryFunctions2(RN,RP,I,BP)
     UIRN      ==> UnivariatePolynomialCategoryFunctions2(I,BP,RN,RP)
     fUnion    ==> Union("nil", "sqfr", "irred", "prime")
     FFE       ==> Record(flg:fUnion, fctr:RP, xpnt:I)
 
     factor(p:RP) : Factored(RP) ==
       p = 0 => 0
       pden: I := lcm([denom c for c in coefficients p])
       pol : RP := pden*p
       ipol: BP := map(numer,pol)$URNI
       ffact: FinalFact := henselFact(ipol,false)
       makeFR(((ffact.contp)/pden)::RP,
         [["prime",map(coerce,u.irr)$UIRN,u.pow]$FFE
                             for u in ffact.factors])
 
     factorSquareFree(p:RP) : Factored(RP) ==
       p = 0 => 0
       pden: I := lcm([denom c for c in coefficients p])
       pol : RP := pden*p
       ipol: BP := map(numer,pol)$URNI
       ffact: FinalFact := henselFact(ipol,true)
       makeFR(((ffact.contp)/pden)::RP,
         [["prime",map(coerce,u.irr)$UIRN,u.pow]$FFE
                             for u in ffact.factors])